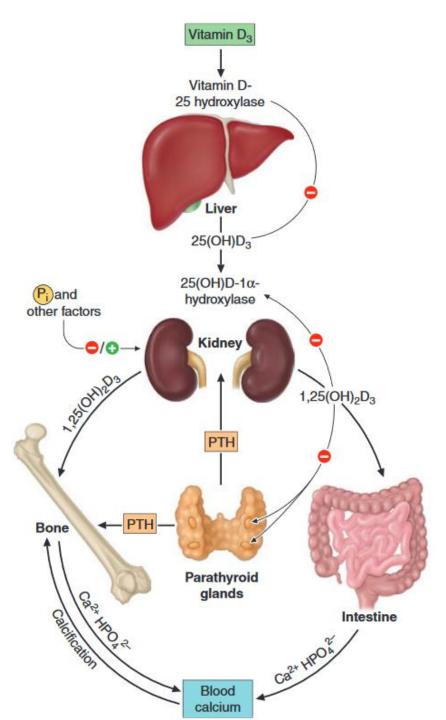


Exposure to sunlight is a major source of vitamin D for most people

> BUT

- Risks of erythema
- Potential skin cancer
- ✤ 80% of daily vitamin D requirement
- Different capacity of individuals to generate similar amounts of vitamin D following exposure to ultraviolet B (UVB) rays (280–315 nm)
- Intensity of sunlight
- Amount of skin exposed
- Duration of exposure to UVB rays
- The zenith angle of the sun
- Thickness of the skin
- The skin color


Vitamin D is synthesised in the skin by the action of sunlight containing ultraviolet B (UVB) radiation. υH Skin synthesis is the main source of vitamin D for most people.

Dietary sources are essential when exposure to sunlight containing the appropriate wavelength is limited.

Vitamin D synthesis and activation. Vitamin D is synthesized in the skin in response to ultraviolet radiation and also is absorbed from the diet. It is then transported to the liver, where it undergoes 25-hydroxylation. This metabolite is the major circulating form of vitamin D. The final step in hormone activation, 1α -hydroxylation, occurs in the kidney

Schematic representation of the hormonal control loop for vitamin D metabolism and function. A reduction in the serum calcium below ~2.2 mmol/L (8.8 mg/dL) prompts a proportional increase in the secretion of parathyroid hormone (PTH) and so mobilizes additional calcium from the bone. PTH promotes the synthesis of 1,25(OH)2D in the kidney, which in turn stimulates the mobilization of calcium from bone and intestine and regulates the synthesis of PTH by negative feedback.

Food	Serving Size	Vitamin D (IU)
Vegetables and Fruit	This food group contains ver	y little of this nutrient
Orange juice, fortified with vitamin D	125 mL (½ cup)	50
Grain Products	This food group contains ver	y little of this nutrient.
Milk and Alternatives		
Soy beverage, fortified with vitamin D	250 mL (1 cup)	86
Milk (3.3 % homo, 2%, 1%, skim, chocolate milk)	250 mL (1 cup)	103-105
Skim milk powdered	24 g (will make 250 mL of milk)	103
Yogurt (plain, fruit bottom), fortified with vitamin D	175 g (3/4 cup)	58-71
Meat and Alternatives		
Egg, yolk, cooked	2 large	57-88
Pork, various cuts, cooked	75 g (2 ½ oz)	6-60
Deli meat (pork, beef, salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54
Beef liver, cooked	75 g (2 ½ oz)	36
Fish and Seafood		
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz)	392-447
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422

Vitamin D Content of Some Common Foods

Snapper, cooked	75 g (2 ½ oz)	392
Salmon, chinook, raw or cooked	75 g (2 ½ oz)	382-387
Whitefish, lake, cooked	75 g (2 ½ oz)	135
Mackerel, Pacific, cooked	75 g (2 ½ oz)	343
Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245
Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221
Mackerel, canned	75 g (2 ½ oz)	219
Herring, Atlantic, pickled	75 g (2 ½ oz)	202
Trout, cooked	75 g (2 ½ oz)	148-208
Herring, Atlantic, cooked	75 g (2 ½ oz)	161
Roe, raw	30 g (1 oz)	145
Sardines, Pacific, canned	75 g (2 ½ oz)	144
Halibut, cooked	75 g (2 ½ oz)	144
Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106
Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78
Tuna, white, canned with water	75 g (2 ½ oz)	60
Fats and Oils		
Cod liver oil	5 mL (1 tsp)	427
Margarine	5 mL (1 tsp)	25-36
Other		
Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100
Rice, oat, almond beverage, fortified with Vitamin D	250 mL (1 cup)	85-90

Food	Serving Size	Vitamin D (IU)
Vegetables and Fruit	This food group contains ver	y little of this nutrient

Vitamin D Content of Some Common Foods

Grain Pr Milk (3.3 % homo, 2%, 1%, skim, chocolate milk) 250 mL (1 cup) 103-105

Milk and Alternatives		
Soy beverage, fortified with vitamin D	250 mL (1 cup)	86
Milk (3.3 % homo, 2%, 1%, skim, chocolate milk)	250 mL (1 cup)	103-105
Skim milk powdered	24 g (will make 250 mL of milk)	103
Yogurt (plain, fruit bottom), fortified with vitamin D	175 g (3/4 cup)	58-71
Meat and Alternatives		
Egg, yolk, cooked	2 large	57-88
Pork, various cuts, cooked	75 g (2 ½ oz)	6-60
Deli meat (pork, beef, salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54
Beef liver, cooked	75 g (2 ½ oz)	36
Fish and Seafood		
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz)	392-447
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422

Snapper, cooked	75 g (2 ½ oz)	392
Salmon, chinook, raw or cooked	75 g (2 ½ oz)	382-387
Whitefish, lake, cooked	75 g (2 ½ oz)	135
Mackerel, Pacific, cooked	75 g (2 ½ oz)	343
Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245
Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221
Mackerel, canned	75 g (2 ½ oz)	219
Herring, Atlantic, pickled	75 g (2 ½ oz)	202
Trout, cooked	75 g (2 ½ oz)	148-208
Herring, Atlantic, cooked	75 g (2 ½ oz)	161
Roe, raw	30 g (1 oz)	145
Sardines, Pacific, canned	75 g (2 ½ oz)	144
Halibut, cooked	75 g (2 ½ oz)	144
Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106
Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78
Tuna, white, canned with water	75 g (2 ½ oz)	60
Fats and Oils		
Cod liver oil	5 mL (1 tsp)	427
Margarine	5 mL (1 tsp)	25-36
Other		
Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100
Rice, oat, almond beverage, fortified with Vitamin D	250 mL (1 cup)	85-90

Food	Serving Size	Vitamin D (IU)
Vegetables and Fruit	This food group contains ver	y little of this nutrient

Vitamin D Content of Some Common Foods

Grain Pr Milk (3.3 % homo, 2%, 1%, skim, chocolate milk) 250 mL (1 cup) 103-105

Milk and Alternatives

Milk (3.: Egg, yolk, cooked

2 large 57-88

Skim milk powdered	24 g (will make 250 mL of milk)	103
Yogurt (plain, fruit bottom), fortified with vitamin D	175 g (3/4 cup)	58-71
Meat and Alternatives		
Egg, yolk, cooked	2 large	57-88
Pork, various cuts, cooked	75 g (2 ½ oz)	6-60
Deli meat (pork, beef, salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54
Beef liver, cooked	75 g (2 ½ oz)	36
Fish and Seafood		
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz)	392-447
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422

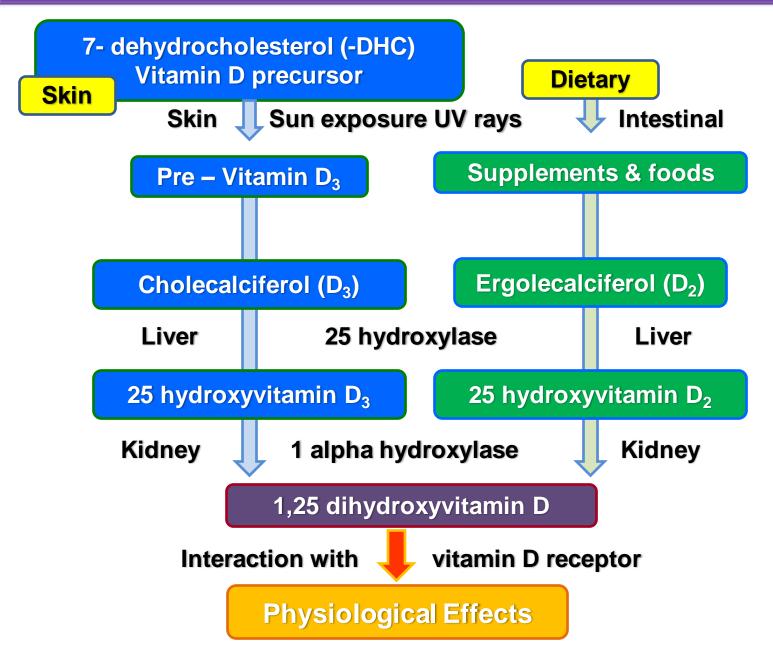
Snapper, cooked	75 g (2 ½ oz)	392
Salmon, chinook, raw or cooked	75 g (2 ½ oz)	382-387
Whitefish, lake, cooked	75 g (2 ½ oz)	135
Mackerel, Pacific, cooked	75 g (2 ½ oz)	343
Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245
Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221
Mackerel, canned	75 g (2 ½ oz)	219
Herring, Atlantic, pickled	75 g (2 ½ oz)	202
Trout, cooked	75 g (2 ½ oz)	148-208
Herring, Atlantic, cooked	75 g (2 ½ oz)	161
Roe, raw	30 g (1 oz)	145
Sardines, Pacific, canned	75 g (2 ½ oz)	144
Halibut, cooked	75 g (2 ½ oz)	144
Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106
Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78
Tuna, white, canned with water	75 g (2 ½ oz)	60
Fats and Oils		
Cod liver oil	5 mL (1 tsp)	427
Margarine	5 mL (1 tsp)	25-36
Other		
Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100
Rice, oat, almond beverage, fortified with Vitamin D	250 mL (1 cup)	85-90

Food	Serving Size	Vitamin D (IU)	Vitamin D Content of Some Common Foods			
Vegetables and Fruit	This food group contains ver	ry little of this nutrient				
Orange Mille (2, 2, 9/, hom	20 20/ 10/	ekim cho	coloto milk)	50 mL (1 cup)	402 405	
	10, 270, 170	, Skiin, Cho	colate milk) 2		103-105	
Milk and Alternatives						
^{Soy bev} Milk (3.2 Egg, yolk, cook	ked			2 large	57-88	
Skim milk powdered	24 g (will make 250 mL of	103				
Yogurt (Salmon, socke	eye/red, ca	inned, coo	ked or raw 7	75 g (2 ½ oz) 39	4-636	
Meat and Alternatives						
Egg, yolk, cooked	2 large	57-88	Snapper, cooked	75 g (2 ½ oz)	392	
Pork, various cuts, cooked	75 g (2 ½ oz)	6-60	Salmon, chinook, raw or cooked		382-387	
Deli meat (pork, beef, salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54		75 g (2 ½ oz)		
Beef liver, cooked	75 g (2 ½ oz)	36	Whitefish, lake, cooked	75 g (2 ½ oz)	135	
Fish and Seafood			Mackerel, Pacific, cooked	75 g (2 ½ oz)	343	
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636	Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245	
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz)	392-447	Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221	
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422	Mackerel, canned	75 g (2 ½ oz)	219	
			Herring, Atlantic, pickled	75 g (2 ½ oz)	202	
			Trout, cooked	75 g (2 ½ oz)	148-208	
1			Herring, Atlantic, cooked	75 g (2 ½ oz)	161	
			Roe, raw	30 g (1 oz)	145	
1			Sardines, Pacific, canned	75 g (2 ½ oz)	144	
1			Halibut, cooked	75 g (2 ½ oz)	144	
1			Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106	
1			Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78	
1			Tuna, white, canned with water	75 g (2 ½ oz)	60	
1			Fats and Oils			
1			Cod liver oil	5 mL (1 tsp)	427	
1			Margarine	5 mL (1 tsp)	25-36	
			Other			
			Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100	
4					4	

Rice, oat, almond beverage, fortified with Vitamin D 250 mL (1 cup)

85-90

Food	Serving Size	Vitamin D (IU)	Vitamin D Content	of Some Comm	on Foods
Vegetables and Fruit	This food group contains ve	ry little of this nutrient			
Orange Mills (2, 2, 9/, b or	00 20/ 10/	okim oho	ooloto milk) 250	ml (1 oun)	102 405
	10, 270, 170	, SKIIII, CHO	colate milk) 250		103-105
Milk and Alternatives					
Hilk (3.3 Egg, yolk, cool	ked			2 large	57-88
Milk (3.: L99, YOTK, COOr	24 g (will make 250 mL of	103			
					4 0 0 0
Yogurt (Salmon, socke	eye/red, ca	inned, cool	ked or raw 75 g	g (2 ½ oz) 39 [,]	4-636
Meat and Alternatives					
Egg, yol Also other oce	ans fishes	and seafo	ods have near Sa	almon level D	
Pork, va AISO OTTET OCC		and Seald	Salmon, chinook, raw or cooked		382-387
Deli meat (pork, beef, salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54	Whitefish, lake, cooked	75 g (2 ½ oz)	135
Beef liver, cooked	75 g (2 ½ oz)	36	Mackerel, Pacific, cooked		
Fish and Seafood			· · ·	75 g (2 ½ oz)	343
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636	Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz)	392-447	Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422	Mackerel, canned	75 g (2 ½ oz)	219
			Herring, Atlantic, pickled	75 g (2 ½ oz)	202
			Trout, cooked	75 g (2 ½ oz)	148-208
			Herring, Atlantic, cooked	75 g (2 ½ oz)	161
			Roe, raw	30 g (1 oz)	145
			Sardines, Pacific, canned	75 g (2 ½ oz)	144
			Halibut, cooked	75 g (2 ½ oz)	144
			Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106
			Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78
			Tuna, white, canned with water	75 g (2 ½ oz)	60
			Fats and Oils		
			Cod liver oil	5 mL (1 tsp)	427
			Margarine	5 mL (1 tsp)	25-36
			Other		
			Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100
			Rice, oat, almond beverage, fortified with Vita	umin D 250 mL (1 cup)	85-90


Food	Serving Size	Vitamin D (IU)	Vitamin D Content of Some Common Foods		
Vegetables and Fruit	This food group contains ver	ry little of this nutrient	Vitamin D Content of Some Common 1 0003		
Orange Mills (2.2.9/ bon	00 20/ 10/	ckim cho	colato milk) 250 m		103-105
	10, 270, 170	SKIIII, CIIU	colate milk) 250 m		103-105
Milk and Alternatives					
Milk (3.: Egg, yolk, cool	ked			2 large	57-88
Skim milk powdered	24 g (will make 250 mL of	103			
Yogurt Salmon, socke	eye/red, ca	inned, coo	ked or raw 75 g	(2 ½ oz) 39	4-636
Meat and Alternatives					
Egg, yol Also other oce	ane fiehae	and seafo	ods have near Salr	non level D	
Pork, va AISO OTTET OCC			Salmon, chinook, raw or cooked		382-387
Deli meat (pork. beef. salami, bologna)	75 g (2 ½ oz)/ 3 slices	30-54	Sumon, chinosk, ruw or cooked		
Beef live Cod liver oil				5 mL (1 ts	p) 427
Fish and Seafood			Salmon, Atlantic, raw or cooked	75 g (2 ½ oz)	206-245
Salmon, sockeye/red, canned, cooked or raw	75 g (2 ½ oz)	394-636	Salmon, chum/keta, raw or cooked	75 g (2 ½ oz)	203-221
Salmon, humpback/pink, canned, cooked or raw	75 g (2 ½ oz) 75 g (2 ½ oz)	392-447 338-422	Mackerel, canned	75 g (2 ½ oz)	219
	75 g (2 /2 02)	550-422	Herring, Atlantic, pickled	75 g (2 ½ oz)	202
			Trout, cooked	75 g (2 ½ oz)	148-208
			Herring, Atlantic, cooked	75 g (2 ½ oz)	161
			Roe, raw	30 g (1 oz)	145
			Sardines, Pacific, canned	75 g (2 ½ oz)	144
			Halibut, cooked	75 g (2 ½ oz)	144
			Tuna, albacore, raw or cooked	75 g (2 ½ oz)	99-106
			Mackerel, Atlantic, cooked	75 g (2 ½ oz)	78
			Tuna, white, canned with water	75 g (2 ½ oz)	60
			Fats and Oils		
			Cod liver oil	5 mL (1 tsp)	427
			Margarine	5 mL (1 tsp)	25-36
			Other		
			Goat's milk, fortified with Vitamin D	250 mL (1 cup)	100
			Rice, oat, almond beverage, fortified with Vitamin	D 250 mL (1 cup)	85-90

Food	Serving Size	Vitamin D (IU)	Vitamin D Content of Some Common Foods				
Vegetables and Fruit	This food group contains ver	ry little of this nutrient					
Grain Pr Milk (3.3 % hon	mo, 2%, 1%	a <mark>, skim, ch</mark> ç	colate milk)	<u>250 m</u>	L (1 cup)	103-105	
Milk and Alternatives							
^{Soy bev} Milk (3. Egg, yolk, cook	ked				2 large	57-88	
Skim milk powdered	24 g (will make 250 mL of	103					
Vogurt Salmon, socke	eye/red, ca	anned, coo	ked or raw	75 g (2 ½ oz) 39	94-636	
Meat and Alternatives							
Also other oce	ans fishes	and seafe	ods have ne	ar Salm	non level D		
Pork, va	75 g (2 % oz)/3 slices	30-54	Salmon, chinook, raw or cooked		75 g (2 ½ oz)	382-387	
Beef live Cod liver oil		30-54			5 mL (1 ts	sn) 427	
Fish and Seafood							
Salmon, Standard multivit	tamin					200 IU	
Salmon, coho, raw or cooked	75 g (2 ½ oz)	338-422	Mackerel, canned		75 g (2 ½ oz)	219	
			Herring, Atlantic, pickled	- /	75 g (2 ½ oz)	202	
			Trout, cook <mark>e</mark> d		75 g (2 ½ oz)	148-208	
4			Herring, Atlantic, cooked		75 g <mark>(2 ½</mark> oz)	161	
Most foods d	do not d	contain	Roe, raw		30 g (1 oz)	145	
meaningful amou			Sardines, Pacific, canned		75 g (2 ½ oz)	144	
			Halibut, cooked		75 g (2 ½ oz)	144	
Despite stip	oulations	and	Tuna, albacore, raw or cooked		75 g (2 ½ oz)	99-106	
regulations, fortifi	ied food cr	ontains	Mackerel, Atlantic, cooked		75 g (2 ½ oz)	78	
U			Tuna, white, canned with water		75 g (2 ½ oz)	60	
variable ad sub-optimal amounts of			Fats and Oils				
vitamin			Cod liver oil		5 mL (1 tsp)	427	
4			Margarine		5 mL (1 tsp)	25-36	
4			Other				
		Goat's milk, fortified with Vitamir	in D	250 mL (1 cup)	100		

Rice, oat, almond beverage, fortified with Vitamin D 250 mL (1 cup)

85-90

Pathways of generation and activation of vitamin D

Vitamin D plays an important role in the regulation of calcium and phosphorus metabolism and, therefore, in **bone** υH health **Vitamin D** has a broad spectrum of pleiotropic effects, that having been studied intensely in recent decades. Studies that provided some insight to a variety of non-skeletal effects of vitamin D

Epidemiological studies Clinical studies VDR knock-out mice cell-based models Genome-wide association

Skeletal and non-skeletal effects of vitamin D				
Musculoskeletal effects	Non-skeletal effects			
Essential for calcium homeostasis	Improved immunity			
Enhanced GI absorption of calcium	Decrease severity of autoimmunity and neurological disorders			
Enhanced osteoblast function	Prevention of type 1 and type 2 diabetes			
Necessary for bone mineralization	Prevention of cancer			
Prevent rickets and osteomalacia	Decreased cardiovascular diseases			
Decrease sarcopenia	Decreased all-cause mortality			
Improve balance and prevention of falls	Decreased pulmonary morbidities			
Prevention of osteoporosis and fractures	Less morbidities and improved survival			

Physiological importance of vitamin D

Skeletal and non-skeletal effects of vitamin D				
Musculoskeletal effects	Non-skeletal effects			
Essential for calcium homeostasis	Improved immunity			
Enhanced GI absorption of calcium	Decrease severity of autoimmunity and neurological disorders			
Enhanced osteoblast function	Prevention of type 1 and type 2 diabetes			
Necessary for bone mineralization	Prevention of cancer			
Prevent rickets and osteomalacia	Decreased cardiovascular diseases			
Decrease sarcopenia	Decreased all-cause mortality			
Improve balance and prevention of falls	Decreased pulmonary morbidities			
Prevention of osteoporosis and fractures	Less morbidities and improved survival			

Physiological importance of vitamin D

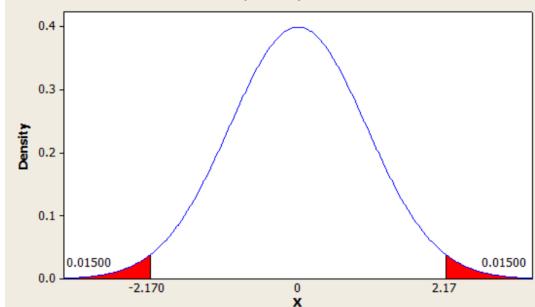
Skeletal and non-skeletal effects of vitamin D				
Musculoskeletal effects	Non-skeletal effects			
Essential for calcium homeostasis	Improved immunity			
Enhanced GI absorption of calcium	Decrease severity of autoimmunity and neurological disorders			
Enhanced osteoblast function	Prevention of type 1 and type 2 diabetes			
Necessary for bone mineralization	Prevention of cancer			
Prevent rickets and osteomalacia	Decreased cardiovascular diseases			
Decrease sarcopenia	Decreased all-cause mortality			
Improve balance and prevention of falls	Decreased pulmonary morbidities			
Prevention of osteoporosis and fractures	Less morbidities and improved survival			

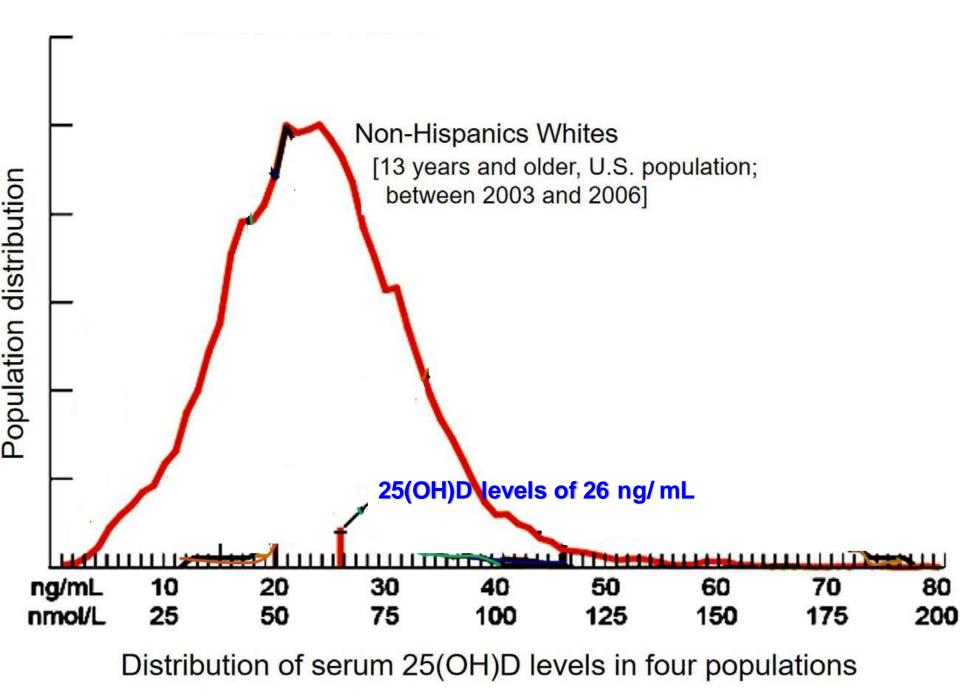
Physiological importance of vitamin D

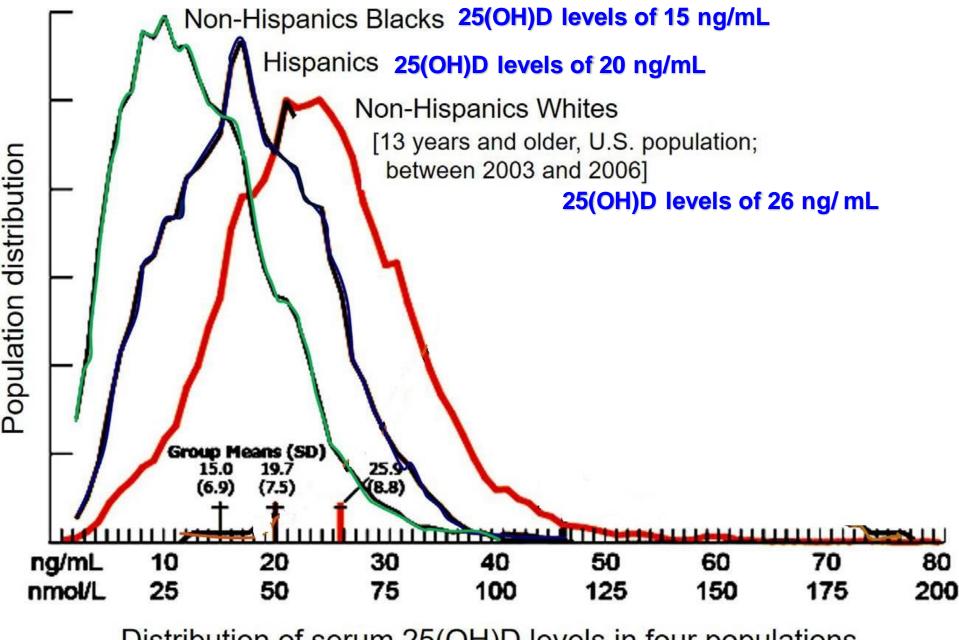
Skeletal and non-skeletal effects of vitamin D				
Musculoskeletal effects	Non-skeletal effects			
Essential for calcium homeostasis	Improved immunity			
Enhanced GI absorption of calcium	Decrease severity of autoimmunity and neurological disorders			
Enhanced osteoblast function	Prevention of type 1 and type 2 diabetes			
Necessary for bone mineralization	Prevention of cancer			
Prevent rickets and osteomalacia	Decreased cardiovascular diseases			
Decrease sarcopenia	Decreased all-cause mortality			
Improve balance and prevention of falls	Decreased pulmonary morbidities			
Prevention of osteoporosis and fractures	Less morbidities and improved survival			

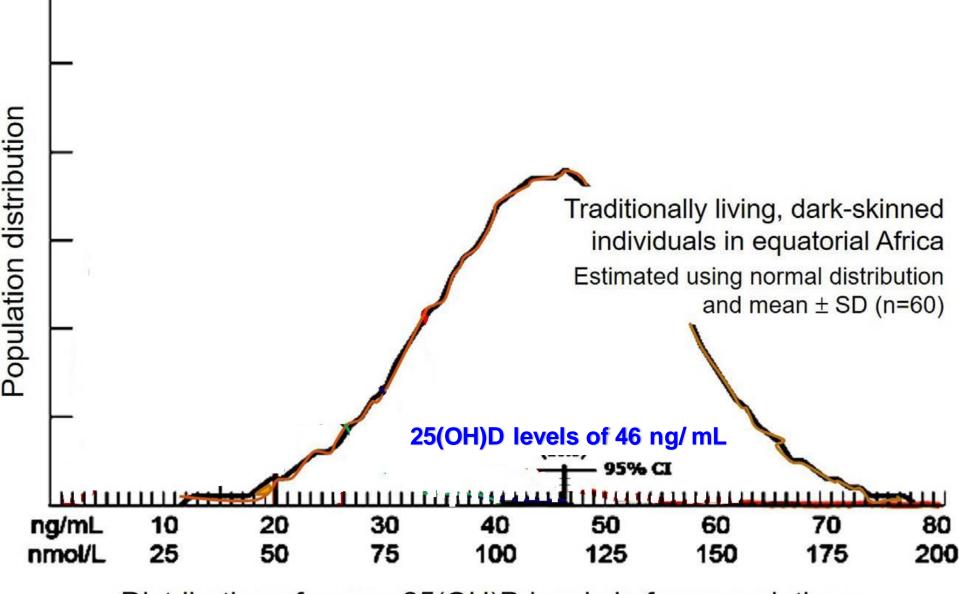
Skeletal and non-skeletal effects of vitamin D				
Musculoskeletal effects	Non-skeletal effects			
Essential for calcium homeostasis	Improved immunity			
Enhanced GI absorption of calcium	Decrease severity of autoimmunity and neurological disorders			
Enhanced osteoblast function	Prevention of type 1 and type 2 diabetes			
Necessary for bone mineralization	Prevention of cancer			
Prevent rickets and osteomalacia	Decreased cardiovascular diseases			
Decrease sarcopenia	Decreased all-cause mortality			
Improve balance and prevention of falls	Decreased pulmonary morbidities			
Prevention of osteoporosis and fractures	Less morbidities and improved survival			

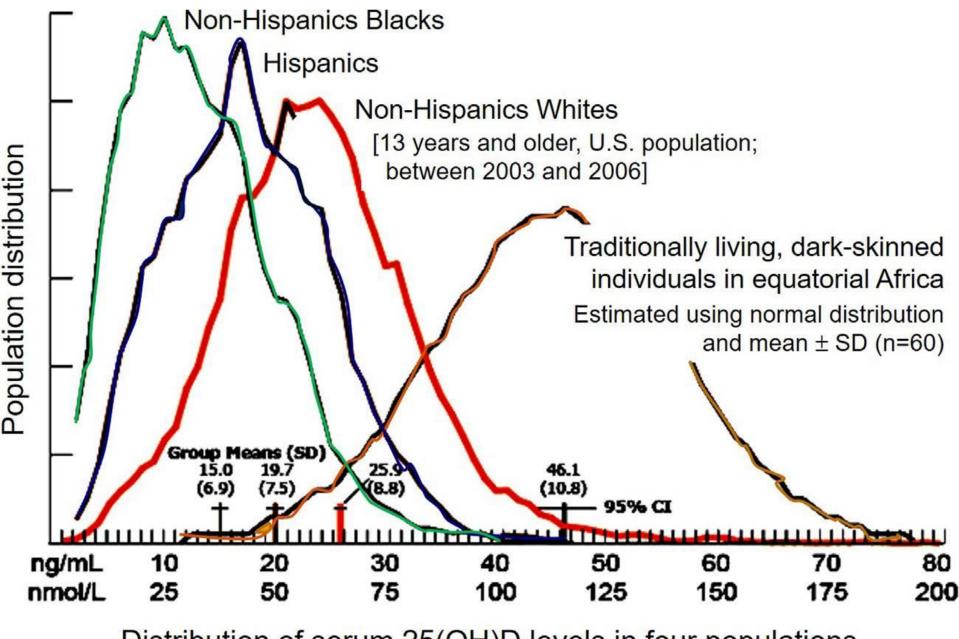
The physiological blood level of 25(OH)D

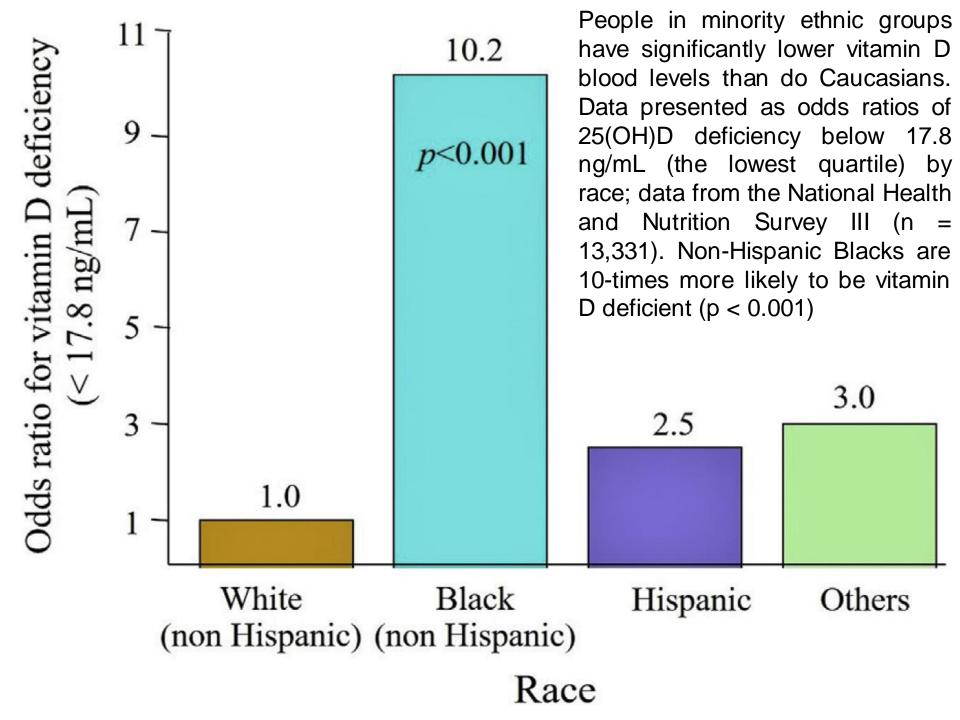

Having physiological levels of vitamin D over a long period,


decreases the incidence and severity of


- Type 1 and Type 2 diabetes
- Insulin Resistance
- Metabolic Syndrome
- Cardiovascular Diseases
- Depression
- Certain Cancers
 - Breast
 - Colon
 - Prostate


Normal range: Characteristic of 95 percent of values from a normal population. The remaining normal results fall outside the normal range, as do any truly abnormal results. The normal range for a particular test result, condition, symptom, or behavior may differ, based on the patient's age, size, sex, ethnicity, or culture. Distribution Plot Normal, Mean=0, StDev=1




Distribution of serum 25(OH)D levels in four populations

Distribution of serum 25(OH)D levels in four populations

Distribution of serum 25(OH)D levels in four populations

Vitamin D deficiency

Vitamin D deficiency is typically diagnosed by measuring the concentration of the **25-hydroxyvitamin D** in the blood, which is the most accurate measure of stores of vitamin D in the body

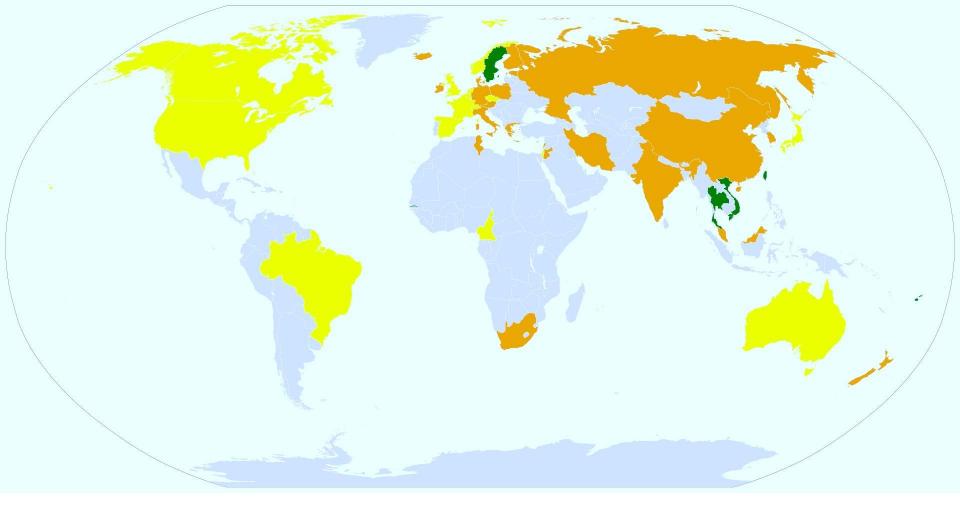
Mayo Medical Laboratories Reference Ranges for Total Serum 25-hydroxyvitamin D [25(OH)D]

Severe deficiency <10 ng/mL

Could be associated with osteomalacia or rickets.

Mild to moderate deficiency 10-24 ng/mL

May be associated with secondary hyperparathyroidism and/or osteoporosis


Optimald 25-80 ng/mL

Levels present in healthy populations

Possible toxicity >80 ng/mL

Mayo Clin Proc. • August 2010;85(8):752-758 • doi:10.4065/mcp.2010.0138

SI conversion factor: To convert 25(OH)D values to nmol/L, multipl by 2.496.

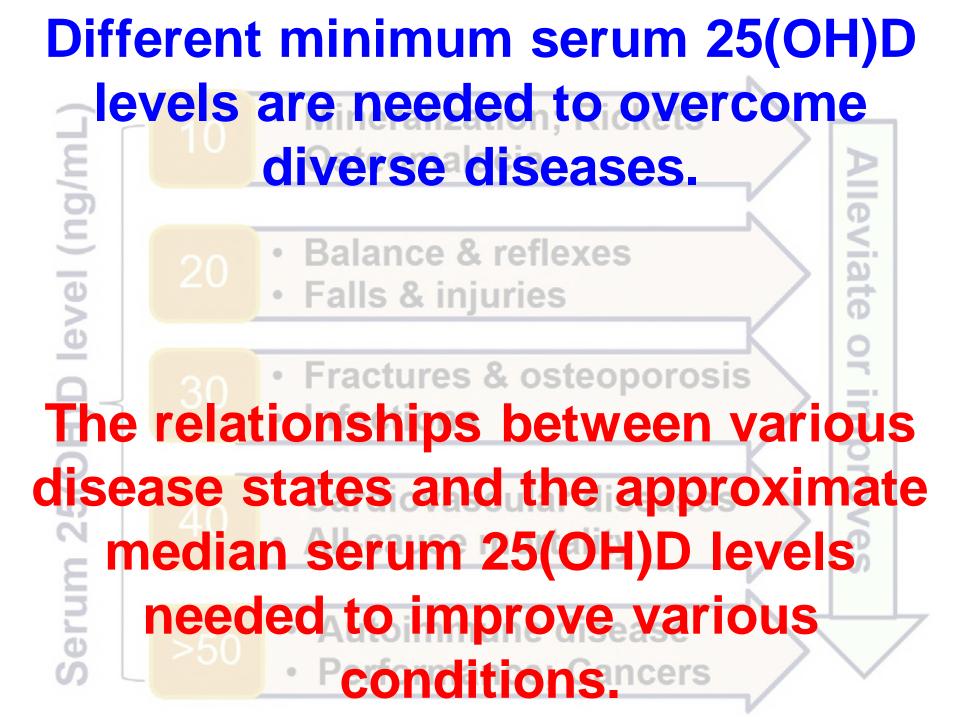
Global vitamin D serum levels among adults

- > 75 nmol/L (> 30 ng/ml)
 - 50-75 nmol/L (20-30 ng/ml)
 - 25-50 nmol/L (10-20 ng/ml)

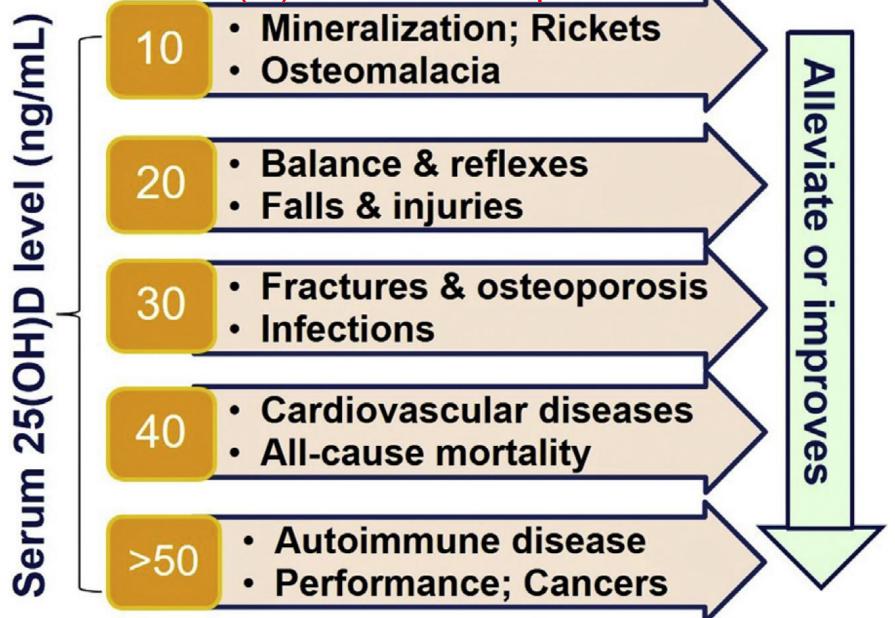
< 25 nmol/L (<10 ng/ml)

High Prevalence of Vitamin D Deficiency among Iranian Population: A Systematic Review and Meta-Analysis Reza Tabrizi, PhD, Mahmood Moosazadeh, PhD, Maryam Akbari, PhD,

Reza Tabrizi, PhD, Mahmood Moosazadeh, PhD,Maryam Akbari, PhD, Mohammad Hossein Dabbaghmanesh, MD, Minoo Mohamadkhani, MS, Zatollah Asemi, PhD, Seyed Taghi Heydari, PhD, Mojtaba Akbari, PhD,⁶ andKamran B Lankarani, MD


Articles published online in Persian and English between 2000 and November 1, 2016, were reviewed. The meta-analysis of 48 studies identified 18531 individuals with vitamin D deficiency.

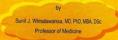
Variables	Included studies	Sample size (n)	Pooled prevalence (%)	95% confidence interval	Heterogeneity (l²-%)
Vitamin D deficiency (total)	48	18531	61.97	52.53-71.40	99.7
Vitamin D deficiency (males)	18	5854	45.64	29.63-61.65	99.6
Vitamin D deficiency (females)	32	10868	61.90	48.85-74.96	99.9


vitamin D deficiency was defined as serum 25(OH) D below 20 ng/mL (<50 nmol/L).

Conclusion

The results obtained showed a significant prevalence of vitamin D deficiency among the Iranian population, a condition to be addressed by appropriate planning.

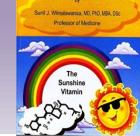
Different minimum serum 25(OH)D levels are needed to overcome diverse diseases. The relationships between various disease states and the approximate median serum 25(OH)D levels needed to improve various conditions.




Diseases and conditions that are associated with or aggravated by vitamin D deficiency

- Osteomalacia/osteoporosis
- Parathyroid diseases
- Muscle function and falls
- Polymyalgia rheumatic
- Autoimmune disorders
- Autism
- Tuberculosis/infection
- Peripheral vascular disease
- Cancer (breast, colon, skin, pancreas, prostate)
- Chronic pain
- Fibromyalgia
- Celiac disease
- Chronic fatigue syndrome
- Cystic fibrosis
- Cardiovascular mortality
- Multiple sclerosis
- Demyelinating diseases

- Hypertension
- Infections
- Type 2 diabetes
- Athletic performance
- Inflammatory bowel disease
- Seasonal affective disorder
- Rheumatoid arthritis
- Depression
- Migraine headaches
- Obesity
- Incontinence
- Rheumatoid arthritis
- Macular degeneration (AMD)
- Parkinson's disease
- Cognitive impairment
- Psoriasis
- Cardiovascular events
- Overall mortality


Diseases and conditions that are associated with or aggravated by vitamin D deficiency

~ . * • Autoimmune * Tuberculosis ***** • Peripheral va ***** Cancer (brea ***** pancreas, pi * Chronic pair * Fibromyalgia Chronic fatic Cystic fibros **↔** Cardiovascu • Multiple scle • Demyelinat *

Osteomalacia/osteoporosis Parathyroid diseases Muscle function and falls Autoimmune disorders **Tuberculosis/infection** Cancer (breast, colon, skin, pancreas, prostate) Chronic pain Celiac disease Chronic fatigue syndrome Cardiovascular mortality Hypertension Infections ✤ Type 2 diabetes Celiac disea * Athletic performance Inflammatory bowel disease Depression Obesity **Rheumatoid arthritis** Cardiovascular events **Overall mortality**

order

(AMD)

Vitamin D: **Everything You Need to Know** The NEW ENGLAND JOURNAL of MEDICINE

November 10, 2018 DOI: 10.1056/NEJMoa1809944

ORIGINAL ARTICLE

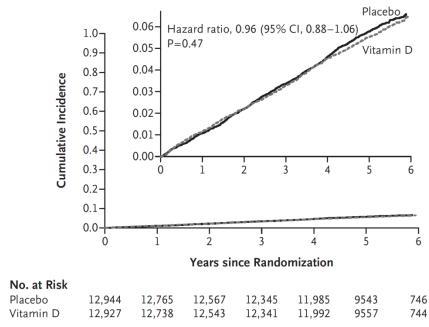
Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease

JoAnn E. Manson, M.D., Dr.P.H., Nancy R. Cook, Sc.D., I-Min Lee, M.B., B.S., Sc.D., William Christen, Sc.D., Shari S. Bassuk, Sc.D., Samia Mora, M.D., M.H.S., Heike Gibson, Ph.D., David Gordon, M.A.T., Trisha Copeland, M.S., R.D., Denise D'Agostino, B.S., Georgina Friedenberg, M.P.H., Claire Ridge, M.P.H., Vadim Bubes, Ph.D., Edward L. Giovannucci, M.D., Sc.D., Walter C. Willett, M.D., Dr.P.H., and Julie E. Buring, Sc.D., for the VITAL Research Group*

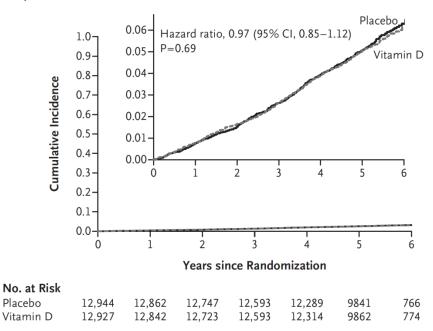
CONCLUSIONS

Supplementation with vitamin D did not result in a lower incidence of invasive cancer or cardiovascular events than placebo

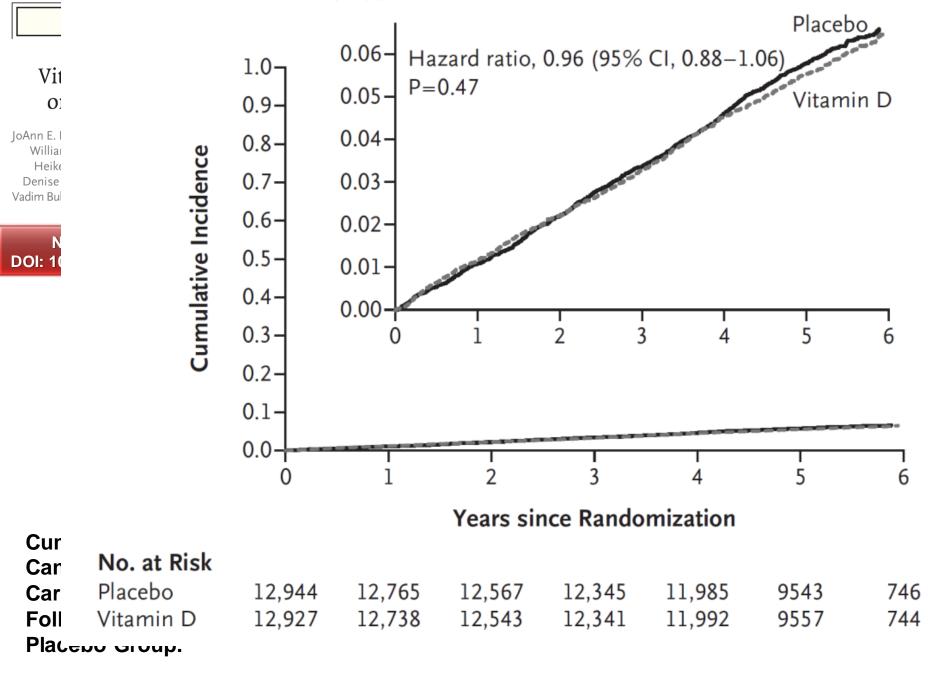
A Invasive Cancer of Any Type


ORIGINAL ARTICLE

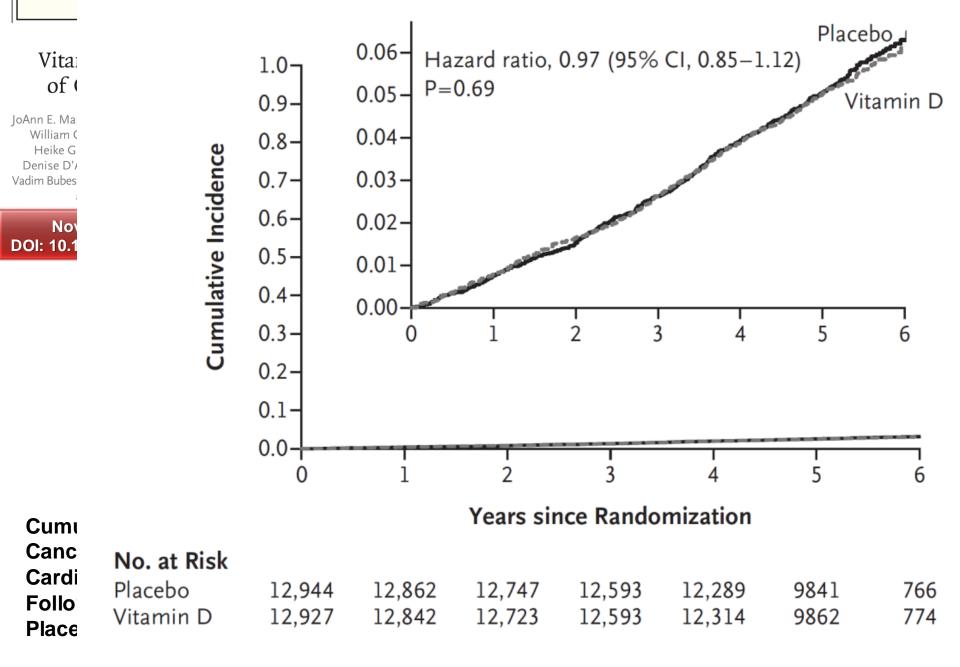
Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease


JoAnn E. Manson, M.D., Dr.P.H., Nancy R. Cook, Sc.D., I-Min Lee, M.B., B.S., Sc.D., William Christen, Sc.D., Shari S. Bassuk, Sc.D., Samia Mora, M.D., M.H.S., Heike Gibson, Ph.D., David Gordon, M.A.T., Trisha Copeland, M.S., R.D., Denise D'Agostino, B.S., Georgina Friedenberg, M.P.H., Claire Ridge, M.P.H., Vadim Bubes, Ph.D., Edward L. Giovannucci, M.D., Sc.D., Walter C. Willett, M.D., Dr.P.H., and Julie E. Buring, Sc.D., for the VITAL Research Group*

November 10, 2018 DOI: 10.1056/NEJMoa1809944


Cumulative Incidence Rates of Invasive Cancer of Any Type and Major Cardiovascular Events, According to Year of Follow-up, in the Vitamin D Group and Placebo Group.

B Major Cardiovascular Events



A Invasive Cancer of Any Type

The NEW ENGLAND JOURNAL of MEDICINE

B Major Cardiovascular Events

Pharmaceutical Sciences September 2017, 23, 189-192 doi: 10.15171/PS.2017.28 *http://journals.tbzmed.ac.ir/PHARM*

Research Article

Concentration of Maternal Serum 25-Hydroxy Vitamin D and Gestational Diabetes Mellitus Risk

Akbar Vosoughi¹, Akbar Aliasgarzadeh¹*, Amir Bahrami¹, Fatemeh Abbasalizadeh², Mitra Niafar¹, Farzad Najafipour¹, Naser Aghamohammadzadeh¹, Zeinab Nikniaz³

¹Endocrinology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

²Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

³Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Background: The present study was designed to primarily investigate the association between serum 25 (OH) vitamin D levels and gestational diabetes mellitus (GDM) in a sample of Iranian woman.

Methods: In the present cross-sectional study 136 pregnant women (68 with GDM and 68 non GDM) who were referred to a university hospital clinic of the Tabriz University of Medical Sciences during July to September 2016 were studied. All pregnant women were assessed for GDM and also serum vitamin D was assessed in all

Variable	Total	Non GDM (n=68)	GDM (n=68)	p-value*
Age (Years)	30.41 ± 5.82	29.66±6.09	31.16±5.48	0.13
Gestational age (weeks)	22.57±8.52	24.88±6.76	20.26±9.50	0.001
BMI (kg/m ²)	29.42 ± 5.45	29.06 ± 5.66	29.78±5.23	0.14
Parity n (%)				0.11≠
Nulliparous	81 (56.9)	36 (52.9)	45 (66.2)	
parous	55 (40.4)	32 (47.1)	23 (33.8)	

*P-value of independent t-test

 \neq p-value of chi-square

Results: The mean serum 25(OH) D of pregnant women was 13.42±7.78 ng/mL. In the term of the mean serum 25(OH) D level, there was not significant differences between GDM (14.45±8.73) and non-GDM (12.38±6.62) pregnant women (p=0.12). Totally 83.8% of participants were vitamin D deficient and 11.8% of them had insufficient amount of serum vitamin D. Only 4.4% of participants were vitamin D sufficient. The results of logistic regression analysis showed no significant association between GDM and vitamin D status in both unadjusted and adjusted (for mother's age, parity, BMI and gestational week) models.

Results: The mean serum 25(OH) D of pregnant women was 13.42±7.78 ng/mL. In the term of the mean serum 25(OH) D level, there was not significant differences between GDM (14.45±8.73) and non-GDM (12.38±6.62) pregnant women (p=0.12). Totally 83.8% of participants were vitamin D deficient and 11.8% of them had insufficient amount of serum vitamin D. Only 4.4% of participants were vitamin D sufficient. The results of logistic regression analysis showed no significant association between GDM and vitamin D status in both unadjusted and adjusted (for mother`s age, parity, BMI and gestational week) models.

Biochemical characteristics of participants (n=136).

Variable	Total	Non-GDM (n=68)	GDM (n=68)	p-unadjusted≠	p-adjusted*
FBS (mg/dl)	89.68±13.70	79.51±7.14	99.71±10.93	< 0.001	< 0.001
GTT 1h (mg/dl)	146.73±42.85	125.66 ± 32.11	182.48 ± 34.38	< 0.001	< 0.001
GGT 2h (mg/dl)	116.06 ± 41.56	97.84±29.97	148.61±39.78	< 0.001	< 0.001
Serum vitamin D (ng/mL)	13.42±7.78	12.38±6.62	14.45±8.73	0.12	0.17

≠Independent t-test

* ANCOVA: Adjusted for, mothers age, BMI, parity, gestational week.

Results: The mean serum 25(OH) D of pregnant women was 13.42±7.78 ng/mL. In the term of the mean serum 25(OH) D level, there was not significant differences between GDM (14.45±8.73) and non-GDM (12.38±6.62) pregnant women (p=0.12). Totally 83.8% of participants were vitamin D deficient and 11.8% of them had insufficient amount of serum vitamin D. Only 4.4% of participants were vitamin D sufficient. The results of logistic regression analysis showed no significant association between GDM and vitamin D status in both unadjusted and adjusted (for mother`s age, parity, BMI and gestational week) models.

Comparison of the vitamin D status in GDM and non-GDM mothers

		Non-GDM	GDM	Odds Rati	io (95% CI)
Variables	Total	(n=68)	(n=68)	Unadjusted model	Adjusted model*
Vitamin D deficiency	114 (83.8)	62 (91.2)	52 (76.5)	0.44 (0.04, 4.81)	0.28 (0.02, 3.54)
Vitamin D insufficiency	16 (11.8)	5 (7.4)	11 (16.2)	0.16 (0.01, 1.48)	0.15 (0.01, 1.44)
Vitamin D sufficiency	6 (4.4)	1 (1.5)	5 (7.4)	1	1

*Logistic regression: Adjusted for, mothers age, BMI, parity, gestational week.

Conclusion: The results of the present study could not show any association between serum vitamin D and GDM. It seems that other factors rather than serum level of 25 (OH) vitamin D level likely explain the growing prevalence of GDM.

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α-	Hypoparathyroidism	
deficiency	Dietary absence	hydroxylation	Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	OF budrous doop routotion		Phenytoin	
	25-hydroxylase mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α-	Hypoparathyroidism	
deficiency	Dietary absence	hydroxylation	Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25-	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
hydroxylation	OF budrovadoco mutation		Phenytoin	
	25-hydroxylase mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α-	Hypoparathyroidism	
deficiency	Dietary absence	hydroxylation	Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	25-hydroxylase mutation		Phenytoin	
		Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α-	Hypoparathyroidism	
deficiency	Dietary absence	hydroxylation	Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	25-hydroxylase mutation		Phenytoin	
		Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α-	Hypoparathyroidism	
deficiency	Dietary absence	hydroxylation	Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)		Oncogenic osteomalacia	
	Impaired enterohepatic circulation	FGF23 excess	X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	25-hydroxylase		Phenytoin	
	mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
	Impaired cutaneous production		Hypoparathyroidism	
Vitamin D deficiency	Dietary absence	Impaired 1α-	Ketoconazole	
,	Malabsorption	nyaroxylation	1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23	Oncogenic osteomalacia	
	Impaired enterohepatic circulation	FGF23 excess	X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
			Phenytoin	
	25-hydroxylase mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α- hydroxylation	Hypoparathyroidism	
deficiency	Dietary absence		Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25-	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
hydroxylation	25 bydrowyless mytotion		Phenytoin	
	25-hydroxylase mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
Vitamin D	Impaired cutaneous production	Impaired 1α- hydroxylation	Hypoparathyroidism	
deficiency	Dietary absence		Ketoconazole	
	Malabsorption		1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)	FGF23 excess	Oncogenic osteomalacia	
	Impaired enterohepatic circulation		X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	QE budress dece restetiere		Phenytoin	
	25-hydroxylase mutation	Other	Obesity	

Causes of Impaired Vitamin D Action				
	Impaired cutaneous production		Hypoparathyroidism	
Vitamin D deficiency	Dietary absence	Impaired 1α- hydroxylation	Ketoconazole	
,, ,	Malabsorption	, , , , , , , , , , , , , , , , , , ,	1α-hydroxylase mutation	
Accelerated loss of vitamin D	Increased metabolism (barbiturates, phenytoin, rifampin)		Oncogenic osteomalacia	
	Impaired enterohepatic circulation	FGF23 excess	X-linked hypophosphatemic rickets	
	Nephrotic syndrome		Renal Failure	
Impaired 25- hydroxylation	Liver disease, isoniazid	Target Organ Resistance	Vitamin D receptor mutation	
	25-hydroxylase		Phenytoin	
	mutation	Other	Obesity	

Who Should Be Tested For Vitamin D Deficiency?

Empiric vitamin D **supplementation** without testing can be justified for patients who have **no overt risk factors or evidence of deficiency** but are thought to have **inadequate sun exposure** or **dietary intake**

Who Should Be Tested For Vitamin D Deficiency?

Clinical Risk Factors for Vitamin D Deficiency

Decreased intake

Inadequate oral intake Malnutrition (poor oral intake)

Limited sun exposure

Gastrointestinal

Malabsorption (eg, short bowel syndrome, pancreatitis, inflammatory bowel disease, amyloidosis, celiac sprue, and malabsorptive bariatric surgery procedures)

Hepatic

Some antiepileptic medications (increased 24-hydroxylase activity) Severe liver disease or failure (decreased 25-hydroxylase activity)

Renal

Aging (decreased 1- α hydroxylase activity)

Renal insufficiency, glomerular filtration rate <60% (decreased 1- α hydroxylase activity) Nephrotic syndrome (decreased levels of vitamin D–binding protein) **Who Should Be Tested For Vitamin D Deficiency?**

Laboratory Findings That Suggest Possible Vitamin D Deficiency

Low 24-hour urine calcium excretion (in the absence of thiazide use)

Elevated parathyroid hormone level

Elevated total or bone alkaline phosphatase level

Low serum calcium and/or serum phosphorus level

Who Should Be Tested For Vitamin D Deficiency?

Radiographic Findings That Suggest Possible Vitamin D Deficiency

Decreased bone mineral density (osteopenia or osteoporosis)

Nontraumatic (fragility) fracture

Skeletal pseudofracture

Indications for assessment of 25(OH)D concentration in serum— groups at risk of vitamin D deficiency.

Disorders	examples of diagnoses
Disorders of the	Rickets, osteomalacia, osteoporosis, bone pains, bone deformations, postural defects, recurrent
locomotor system	low energy fractures and aseptic osteonecrosis
Disorders of calcium-	Disorders of calcemia, calciuria, phosphatemia, phosphaturia, hypophosphatasia and
phosphorus metabolism	hiperphosphatasia
Chronic treatment with	Chronic corticosteridotherapy, treatment with ketoconazole, antiretroviral and antiepileptic
some medications	therapy
	Maldigestion and malabsorption syndromes, cystic fibrosis and chronic inflammatory bowel
Maldigestion and	disease Liver diseases Liver failure, cholestasis, posttrasplant state and non-alcoholic fatty liver
malabsorption	disease (NAFLD) Kidney diseases Renal failure, posttransplant state and nephrocalcinosis
	Hyper- and hypoparathyroidism, hyper- and hypothyroidism, diabetes type 1, growth hormone
Endocrine disorders	deficiency, anorexia nervosa and autoimmune polyglandular syndromes
Disorders of somatic	
development	Short stature, tall stature, obesity and cachexia
Developmental delay	Delay of psychomotor development and intellectual disability
Diseases of the nervous	Cerebral palsy, chronic immobilization, autism, multiple sclerosis, epilepsy, seizures of unknown
system	etiology, miopathy and muscular dystrophy
Allergy	asthma, atopic dermatitis
	Collagen diseases, rheumathoid arthritis, autoimmune diseases of the skin, diabetes type 1 and
Autoimmune diseases	Hashimoto disease
	Recurrent infections of the respiratory tract, asthma, recurrent and chronic inflammatory states
Immune disorders	of other systems
Needland	Blood cancer, malignancy of the lymphatic system and other organs, tumors and states after
Neoplasms	oncologic treatment
Cardiovascular diseases	Arterial hypertension and ischemic heart disease
Metabolic diseases	Diabetes type 2, lipid disorders, obesity and metabolic syndrome

Disorders	examples of diagnoses			
Disorders of the locomotor system	Rickets, osteomalacia, osteoporosis, bone pains, bone deformations, postural defects, recurrent low energy fractures and aseptic osteonecrosis			
Disorders of calcium-phosphorus metabolism				
Chronic treatment with some medications	Chronic corticosteridotherapy, treatment with ketoconazole, antiretroviral and antiepileptic therapy			
Maldigestion and malabsorption	Maldigestion and malabsorption syndromes, cystic fibrosis and chronic Indications for			
Endocrine disorders	assessment of 25(OH)D			
Disorders of somatic development	concentration in serum—			
Developmental delay	groups at risk of vitamin			
Diseases of the nervous system	D deficiency.			
Allergy	dystrophy asthma, atopic dermatitis			
Autoimmune diseases	Collagen diseases, rheumathoid arthritis, autoimmune diseases of the skin, diabetes type 1 and Hashimoto disease			
Immune disorders	Recurrent infections of the respiratory tract, asthma, recurrent and chronic inflammatory states of other systems			
Neoplasms	Blood cancer, malignancy of the lymphatic system and other organs, tumors and states after oncologic treatment			
Cardiovascular diseases	Arterial hypertension and ischemic heart disease			
Metabolic diseases	Diabetes type 2, lipid disorders, obesity and metabolic syndrome			

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); 3) if the assessment of 25(OH)D concentration is not possible, it is) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1⊕⊕⊕); 2) Supplementation should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1⊕⊕); 3) When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1⊕⊕⊕); 	 400 IU/day from the first days of life, regardless the way of feeding (1⊕⊕⊕); There is no need to assay 25(OH)D concentrations routinely (1⊕⊕⊕); Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups (parenteral nutrition >2 weeks. ketoconazole >2 weeks, anticonvulsant treatment, cholestasis, birth weight <1500g) (2⊕⊕); 	1) 0-6 months: 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken with food (1⊕⊕⊕);	 In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); Obese children require 1200-2000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus \oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus \oplus)$; 3) Obese adolescents require 1600-4000 IU/day , depending on severity of obesity $(1\oplus \oplus)$;	supplementation of 800- 2000 IU/day is recommended, based on	2) Obese seniors require 1600-4000 IU/day, depending on severity of	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year (2⊕⊕); 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity (2⊕⊕);

1 µg = 40 IU

1 ng/mL = 2.5 nmol/L

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
under the control of 25(OH)D concentration (1⊕⊛⊕); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30-	$ \begin{array}{l} \label{eq:constraint} \begin{array}{l} 1 \label{eq:constraint} \label{eq:constraint} \\ \begin{array}{l} \mbox{supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1000 mm should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the outpatient care (1000 mm should be carried out U/day. Combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1000 mm s). \end{array} $	1) 400 IU/day from the first days of life, regardless the way of feeding (1⊕⊕⊕); 2) There is no need to assay 25(OH)D concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups (parenteral nutrition >2 weeks, ketoconazole >2 weeks, anticonvulsant treatment, cholestasis, birth weight <1500g) (2⊕⊕);	1) 0-6 months: 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken with food (1⊕⊕⊕);	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese children require 1200-2000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe ($1\oplus \Theta$); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year ($1\oplus \Theta$); 3) Obese adolescents require 1600-4000 IU/day, depending on severity of obesity ($1\oplus \Theta$);	supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕);	 Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (2⊕⊕); Obese eldest seniors require 4000-8000 IU/day, depending on severity of obesity (2⊕⊕);

Pregnant and Lactating Women

- I. Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration $(1 \oplus \oplus \oplus)$;
- II. When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30–50 ng/ ml (1 \oplus \oplus \oplus);
- III. If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2,000 IU/day, throughout pregnancy and lactation $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
adult population, if it is possible under the control of 25(OH)D concentration (1⊕@⊕); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); 3) If the assessment of 25(OH)D concentration is not possible, it is	1) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (10 \oplus 0); (2) 2) Supplementation nould be carried out under the control 2 <i>E</i> (OH)D concentration. It is during hospitalization (the first control after 4 weeks of supplement in), as well as in the out- patient carr (00); 3) When a viewing a total dose of 1000 IU/day, of hobining supplements and diet, there is this of vitamin D overdose, particul vi in neonates with birth weight <100C (1000);	 400 IU/day from the first days of life, regardless the way of feeding (1⊕⊕⊕); There is no need to assay 25(OH)D concentrations routinely (1⊕⊕⊕); Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups (parenteral nutrition >2 weeks, ketoconazole >2 weeks, anticonvulsant treatment, cholestasis, birth weight <1500g) (2⊕⊕); 	400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1000); 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1000); 3) Obese children require 1200-2000 IU/day, depending on severity of obesity (1000);	insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adolescents require 1600-4000 IU/day, depending	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (10⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (10⊕⊕); 3) Obese adults require 1600-4000 IU/day. depending on severity of obesity (10⊕⊕);	 Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year (2⊕®); 2) Obse eldest seniors require 4000-8000 IU/day , depending on severity of obesity (2⊕®);

Preterm Neonates

Neonates Born at ≤32 Weeks of Gestation

- I. It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding $(1 \oplus \oplus \oplus)$;
- II. Supplementation should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out-patient care $(1 \oplus \oplus)$;
- III. When achieving a total dose of 1,000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1,000 g $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
1) Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration ($1\oplus\oplus\oplus$); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration subtin range simal concentrations within ranges of >30-50 ng/ml ($1\oplus\oplus$); 3) If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day , throughout pregnancy and lactation ($1\oplus\oplus\oplus$);	(1)) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1000); regardless the way of teeding (1000); regardless the way concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1000); 3) When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1000);	regardless the way of feeding (1⊕⊕⊕); 2) There is no need to assay 25(OH)D concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups	feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day , depending on daily amount of vitamin D taken	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus \oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus \oplus)$; 3) Obese children require 1200-2000 IU/day, depending on severity of obesity (1 $\oplus \oplus$);	insolation are met, supplementation is not necessary, although still recommended and safe (10⊕00); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕©0); 3) Obese adolescents require	to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕∞); 2) if insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the	 Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year $(2 \oplus \oplus)$; 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity $(2 \oplus \oplus)$;

Preterm Neonates

Neonates Born at 33–36 Weeks of Gestation

- I. 400 IU/day from the first days of life, regardless the way of feeding $(1 \oplus \oplus \oplus);$
- II. There is no need to assay 25(OH)D concentrations routinely $(1 \oplus \oplus \oplus)$;
- III. Supplementation under the control of 25(H)D concentration should be considered in children in the risk groups (parenteral nutrition >2 weeks, ketoconazole >2 weeks, anticonvulsant treatment, cholestasis and birth weight <1,500 g) $(2 \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
 Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day, throughout pregnancy and lactation (1⊕⊕⊕); 	$ \begin{array}{l} \label{eq:constraint} \label{eq:constraint} \end{tabular} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be	1) 0-6 months: 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitant taken with food (1⊕⊕0)	2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕); 3) Obese children require	2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus \oplus \oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus \oplus)$; 3) Obese adults require 1600-4000 IU/day, depending on severity of obesity $(1\oplus \oplus)$;	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year ($2\oplus \oplus$); 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity ($2\oplus \oplus$);

Neonates Born at Term and Infants

i. 0–6 months: 400 IU/day from first days of life, regardless the way of feeding $(1 \oplus \oplus \oplus)$;

ii. 6–12 months: 400–600 IU/day, depending on daily amount of vitamin D taken with food $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
 Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day, throughout pregnancy and lactation (1⊕⊕⊕); 	$ \begin{array}{l} 1) \mbox{ It is recommended to start} \\ \mbox{supplementation at a dose of 800 IU/day} \\ from the first days of life (if enteral nutrition is possible), regardless the way \\ \mbox{of feeding (1000000000000000000000000000000000000$	concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups	 and the second s	 In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommend, based on both sight and the party vitamin D intake, throughout a year (1⊕⊕⊕); Obese children require 1200-2000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adolescents require	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus \oplus \oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus \oplus \oplus)$; 3) Obese adults require 1600-4000 IU/day, depending on severity of obesity $(1\oplus \oplus \oplus)$;	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obese seniors require 1800-4000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year $(2 \oplus \oplus)$; 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity $(2 \oplus \oplus)$;

Children (1–10 Years)

- i. In healthy children **sunbathing** with uncovered forearms and legs for at least 15 min between 10.00 and 15.00 h, without sunscreen in the period from May to September, supplementation is **not necessary**, although still recommended and safe $(1 \oplus \oplus \oplus)$;
- ii. If above insolation guidelines are not fulfilled, supplementation of 600–1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
 Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day, throughout pregnancy and lactation (1⊕⊕⊕); 	1)) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1000); 2) Supplementation should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1000); 3) When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1000);	concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups	400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken	supplementation is not necessary, although still recommended and safe (1@#@); 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on	September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the nory vitamin D intake, thoughout a year (1⊕⊕ 3) use adolescents require y0-4000 IU/day, depending	recommended, based on	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obses seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year $(2\oplus \oplus)$; 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity $(2\oplus \oplus)$;

Adolescents (11–18 Years)

- i. In healthy adolescents **sunbathing** with uncovered forearms and legs for at least 15 min between 10.00 and 15.00 h, without sunscreen in the period from **May to September**, supplementation is **not necessary**, although still recommended and safe $(1 \oplus \oplus \oplus)$;
- ii. If above insolation guidelines are not fulfilled, supplementation of 800–2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
 Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day, throughout pregnancy and lactation (1⊕⊕⊕); 	1)) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1000); regardless the way of feeding (1000); regardless the way of supplementation should the carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1000); 3) When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1000);	 There is no need to assay 25(OH)D concentrations routinely (10+0+0); Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups 	1) 0-6 months: 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken with food (1⊕⊕⊕);	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese children require 1200-2000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus 0\oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus 0\oplus)$; 3) Obese adolescents require 1600-4000 IU/day, depending on severity of obesity $(1\oplus 0\oplus)$;	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊙⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adults require 1600-4000 IU/day, depending on severity of of aty (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obese seniors require 1600-4000 IU/day , depending on severity of obesity (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the distary vitamin D intake is recommended throughout a year (2⊕⊕); 2) Obse eldest seniors require 4000-8000 IU/day , depending on severity of obesity (2⊕⊕);

Adults (19–65 Years)

- i. In healthy adults **sunbathing** with uncovered forearms and legs for at least 15 min between 10.00 and 15.00 h, without sunscreen in the period from May to September, **supplementation is not necessary**, although still recommended and safe $(1 \oplus \oplus \oplus)$;
- ii. If above insolation guidelines are not fulfilled, supplementation of 800–2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
adult population, if it is possible under the control of 25(OH)D concentration (1@@@); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30-	(1)) It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1000); 2) Supplementation should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1000); 3) When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1000);	 400 IU/day from the first days of life, regardless the way of feeding (1⊕⊕€); There is no need to assay 25(OH)D concentrations routinely (1⊕⊕€); Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups (parenteral nutrition >2 weeks, ketoconazole >2 weeks, anticonvulsant treatment, cholestasis, birth weight <1500g) (2⊕⊕); 	1) 0 5 months 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken with food (1⊕⊕⊕):	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe $(1\oplus \oplus \oplus)$; 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year $(1\oplus \oplus)$; 3) Obese children require 1200-2000 IU/day, depending on severity of obesity (1 $\oplus \oplus$);	insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adolescents require	1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adults require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕);	1) Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); 2) Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1=1);	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day , based on body weight and the dietary vitamin D intake is recommended throughout a year $(2\oplus \oplus)$; 2) Obese eldest seniors require 4000-8000 IU/day , depending on severity of obesity $(2\oplus \oplus)$;

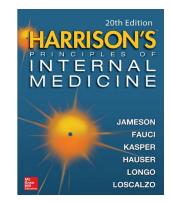
Seniors (>65–75 Years) and People With a Dark Complexion

- i. Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800–2,000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year $(1 \oplus \oplus \oplus)$;
- ii. Obese seniors require 1600-4000 IU/day depending on severity of obesity $(1 \oplus \oplus \oplus)$;

Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
under the control of 25(OH)D concentration (1⊕⊕⊕); 2) When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentration, to maintain optimal concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); 3) If the assessment of 25(OH)D concentration is not possible, it is	 It is recommended to start supplementation at a dose of 800 IU/day from the first days of life (if enteral nutrition is possible), regardless the way of feeding (1⊕⊕⊕); Supplementation should be carried out under the control of 25(OH)D concentration, both during hospitalization (the first control after 4 weeks of supplementation), as well as in the out- patient care (1⊕⊕); When achieving a total dose of 1000 IU/day, combining supplements and diet, there is a risk of vitamin D overdose, particularly in neonates with birth weight <1000 g (1⊕⊕⊕); 		1) 0-6 months: 400 IU/day from first days of life, regardless the way of feeding (1⊕⊕⊕); 2) 6-12 months: 400-600 IU/day, depending on daily amount of vitamin D taken with food (1⊕⊕⊕);	 In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); Obese children require 1200-2000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕@@); 3) Obese adolescents require 1600-4000 IU/day, depending on sevently of obesity (1⊕@@); 	to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕∞); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the	 Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); Obese seniors require 1800-4000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	1) Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 Ul/day , based on body weight and the dietary vitamin D intake is recommended throughout a year (2009); 2) Obese eldest seniors require 4000 000 IU/day , d nding on sevent obesity (20

Eldest Seniors (>75 Years)

- i. Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2,000–4,000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year $(2 \oplus \oplus)$;
- ii. Obese eldest seniors require 4000-8000 IU/day depending on severity of obesity $(1 \oplus \oplus \oplus)$;


Pregnancy and lactation	Preterm neonates	Preterm neonates	Neonates	Children	Adolescents	Adults	Seniors	Seniors
	≤ 32 weeks of gestation	born at 33-36 weeks of gestation	and infants	1-10 yrs	11-18 yrs	19-65 yrs	> 65-75 yrs	>75 yrs
 Women planning pregnancy should receive adequate vitamin D supply, the same as in the general adult population, if it is possible under the control of 25(OH)D concentration (1⊕⊕⊕); When pregnancy is confirmed, supplementation should be carried out under the control of 25(OH)D concentrations within ranges of >30- 50 ng/ml (1⊕⊕⊕); If the assessment of 25(OH)D concentration is not possible, it is recommended to use vitamin D at a dose of 2000 IU/day, throughout pregnancy and lactation (1⊕⊕⊕); 	nutrition is possible), regardless the way	regardless the way of feeding (1⊕⊕⊕); 2) There is no need to assay 25(OH)D concentrations routinely (1⊕⊕⊕); 3) Supplementation carried out under the control of 25(H)D concentration should be considered in children in the risk groups		1) In the period from May to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 600- 1000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese children require 1200-2000 IU/day.	insolation are met, supplementation is not necessary, although still recommended and safe (1⊕⊕⊕); 2) If insolation guidelines are not fulfilled, supplementation of 800-2000 IU/day is recommended, based on body weight and the dietary vitamin D intake, throughout a year (1⊕⊕⊕); 3) Obese adolescents require 1600-4000 IU/day, depending	to September, if guidelines for insolation are met, supplementation is not necessary, although still recommended and safe (1⊕∞); 2) If insolation guidelines are not fulfilled, supplementation of 800- 2000 IU/day is recommended, based on body weight and the	 Due to decreased efficacy of the skin synthesis, supplementation of vitamin D in the dose of 800-2000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (1⊕⊕⊕); Obese seniors require 1600-4000 IU/day, depending on severity of obesity (1⊕⊕⊕); 	 Due to decreased efficacy of the skin synthesis, potential malabsorption and altered metabolism of vitamin D, supplementation of 2000-4000 IU/day, based on body weight and the dietary vitamin D intake is recommended throughout a year (2⊕©); Obese eldest seniors require 4000-8000 IU/day, depending on severity of obesity (2⊕©);

Supplementation in Groups at Risk of vitamin D Hypersensitivity

1. Prior to initiating the supplementation, the probability of vitamin D hypersensitivity should be assessed if feasible (hypercalcemia, hypercalciuria, nephrocalcinosis, nephro-lithiasis, *CYP24A1* gene mutation, *SLC34A1* gene mutation or history of other types of vitamin D hypersensitivity in an individual or family members).

This recommendation applies to all age groups as well as to groups at the risk of vitamin D deficiency $(1 \oplus \oplus \oplus)$;

2. In groups at the risk of vitamin D hypersensitivity, supplementation should be supervised and carried out carefully and in an individual manner, preferably under the control of calcium-phosphate variables, particularly calcemia, calciuria, parathormone (PTH), 25(OH)D and 1,25(OH)2D $(1 \oplus \oplus)$;

Based on the National Academy of Medicine 2010 report, the recommended daily intake of vitamin D is 600 IU from 1 to 70 years of age, and 800 IU for those over 70.

Based on the observation that 800 IU of vitamin D, with calcium supplementation, decreases the risk of hip fractures in elderly women, this higher dose is thought to be an appropriate daily intake for prevention of vitamin D deficiency in adults.

Severe Deficiency	Deficiency	Suboptimal	Optimal	High	High	Toxic
0-10 ng/ml (1⊕⊕⊕);	>10-20 ng/ml (1⊕⊕⊕);	>20-30 ng/ml (1⊕⊕⊕);	>30-50 ng/ml (1⊕⊕⊕);	>50-75 ng/ml (2⊕⊕);	>75-100 ng/ml (2⊕⊕);	>100 ng/ml (1⊕⊕⊕)
1) Therapy in relation to age and body weight; control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); 2) Recommended therapeutic doses: > 0-12 months of age: 2000 IU/day (1⊕⊕⊕); > 1-10 years: 3000-6000 IU/day (1⊕⊕⊕); > 10 years: 3000-6000 IU/day (1⊕⊕⊕); > 10 years: 6000 IU/day (1⊕⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/m1 is reached, then it is recommended to use consecutive maintenance dose i.e. a prophylactic dose recommended for general population, in relation to age and body weight (1⊕⊕⊕); 4) In patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO, ALPL, PTH, Ca/creatinine ratio in urine), and if available – to examine bone mineral density using DXA (2⊕⊕);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (20%); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time (20%); If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time (20%); In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism (Ca, PO, ALPL, PTH, Ca/creatinine ratio in urine), and, if available – bone mineral density using DXA (20⊕); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕⊕); If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the general population (2⊕⊕); 	1) Continue previous management (1000);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2∂⊕); If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (2⊕⊕); If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started (2⊕⊕); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); Vitamin D intake should be suspended for 1-2 months (2⊕⊕); In neonates, infants and toddlers, calcemia and calciuria should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2⊕⊕); There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations <50 ng/ml (2⊕⊕); 	 Vitamin D supplementation has to be absolutely terminated; calcemia and calciuria should be assessed, and 25(0H)D concentration should be monitored at 1-month intervals until 25(0H)D concentrations of ≤50 ng/ml are reached (1⊕⊕⊕); Vitamin D intoxication is defined as the state in which the 25(0H)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕⊕⊕); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕⊕); Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); There is a possibility to re-entry vitamin D supplementation at doses recommended for peers finer reaching

normocalcemia, normocalciuria and 25(OH)D concentrations ≤50 ng/ml, followed by excluding vitamin D hypersensitivity (2⊕⊕);

Severe Deficiency	Deficiency	Suboptimal	Optimal	High	High	Toxic
0-10 ng/ml (1⊕⊕⊕);	>10-20 ng/ml (1⊕⊕⊕);	>20-30 ng/ml (1⊕⊕⊕);	>30-50 ng/ml (1⊕⊕⊕);	>50-75 ng/ml (2⊕⊕);	>75-100 ng/ml (2⊕⊕);	>100 ng/ml (1⊕⊕⊕)
 Therapy in relation to age and body weight; control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); Recommended therapeutic doses: 0-12 months of age: 2000 IU/day (1⊕⊕⊕); 1-10 years: 3000-6000 IU/day (1⊕⊕⊕); > 10 years: 6000 IU/day (1⊕⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended to use consecutive maintenance dose i.e. a prophylactic dose recommended for general population, in relation to age and body weight (1⊕⊕⊕); 4) In patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO, ALPL, PTH, Ca/creatinine ratio in urine), and if available – to examine bone mineral density using DXA (2⊕⊕); 	1) Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) ($2\oplus \oplus$); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time ($2\oplus \oplus$); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time ($2\oplus \oplus$); 4) In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism (Ca, PO ₄ , ALPL, PTH, Ca/creatinie ratio in unine), and, if available – bone mineral density using DXA ($2\oplus \oplus$);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕9); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕9); If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the general population (2⊕9); 	1) Continue previous management (1⊕⊕⊕);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (20⊕); If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (29⊕); If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started (2⊕⊕); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2@⊕); Vitamin D intake should be suspended for 1-2 months (2@⊕); In neonates, infants and toddlers, calcemia and calcuna should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2@⊕); There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations <50 ng/ml (2@⊕); 	 Vitamin D supplementation has to be absolutely terminated; calcemia and calciuria should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of 550 ng/ml are reached (1⊕⊕⊕); Vitamin D intoxication is defined as the state in which the 25(OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕⊕€); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕€); Terviously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕©); There is a possibility to re-entry vitamin D supplementation at doses recommended for peers from the general population, after reaching normocalcemistic (2000);

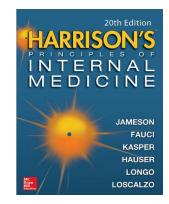
Principles of Supplementation and Treatment with vitamin D based on 25(OH)D Concentrations

- i. A single loading dose of vitamin D is not recommended $(2 \oplus \oplus)$;
- ii. Vitamin D dosing should be based on 25(OH)D concentrations and antecedent prophylactic management $(2 \oplus \oplus)$;
- iii. The diagnostic standards include simultaneous assays of 25(OH)D2 and 25(OH)D3 [25(OH)D TOTAL], with intraassay variation <5% and interassay variation <10%, being subject to quality assurance by the certifying system DEQAS ($2 \oplus \oplus$);

weight: control assay of 25(OH)D supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); supplementation was appropriate, is recommended to supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); supplementation was appropriate, is recommended to supplementation was appropriate, is recommended to be absolutely termina > 0-12 months of herapeutic doses: > 0 if time recommended to > 0 if time recommended to	Severe Deficiency	Deficiency	Suboptimal	Optimal	High	High	Toxic
	0-10 ng/ml (1⊕⊕⊕);	>10-20 ng/ml (1⊕⊕⊕);	>20-30 ng/ml (1⊕⊕⊕);	>30-50 ng/ml (1⊕⊕⊕);	>50-75 ng/ml (2⊕⊕);	>75-100 ng/ml (2⊕⊕);	>100 ng/ml (1⊕⊕⊕)
 (10=00): >>10 years: 6000 UUday (10=00): 3) Treatment should be carried out for 3 months 'time (2:00): 3) If vitamin D was not supplemented previously, It is recommended to sears consentation on 3-30-50 ng/mi is reached, then it is recommended to peers from the general population on relation to assess 25(OHD) concentration in 3 months' time (2:00): 3) If vitamin D was not supplemented previously, It is recommended to sear prophylactic does to came that is hale is a search to assess and body weight (The): 4) In patients with skelatal symptoms and boem mineral disk ars (bomed for reaching ration population on relation to agaes and bone mineral density using DXA (2:00): 4) In patients with a full available - boare mineral density using DXA (2:00): 50 ng/mi (2:00): 6) Treatment addensity using DXA (2:00): 	 weight: control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (19⊕⊕); 2) Recommended therapeutic doses: > 0-12 months of age: 2000 IU/day (10⊕⊕); > 1-10 years: 3000-6000 IU/day (10⊕⊕); > 10 years: 6000 IU/day (10⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended for general population or relation to age and body weight (1 1 ⊕⊕); 4) In patients with sk thal symptoms and bone mineral disc ters (bone deformations, bone pai history of fragility fractures); it is na yeasy to assess and monitor parameters of calcium-phosphate metabola. (Ca, PO, ALPL, PTH, Calcreatinin, vito in urine), and if available – to exan, p 	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2⊕9); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time (2⊕9); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time (2⊕€); 4) In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism (Ca, PO ₄ , ALPL, PTH, Ca/creatinine ratio in urine), and, if available – bone mineral density using	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕⊕); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the		supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (20⊕); 2) If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (20⊕); 3) If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2@⊕); 2) Vitamin D intake should be suspended for 1-2 months (2@⊕); 3) In neonates, infants and toddlers, calcemia and calciuria should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2@⊕); 4) There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations	4) Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way

Severe Deficiency 0–10 ng/ml ($1 \oplus \oplus \oplus$)

Therapeutic doses should be implemented, based on age and body weight; the repeated control assay of 25(OH)D concentration should be performed after 1–3 months of therapy (1⊕⊕⊕);


hypersensitivity (2⊕⊕);

a. From birth to 12 months of age: 2,000 IU/day $(1 \oplus \oplus)$;

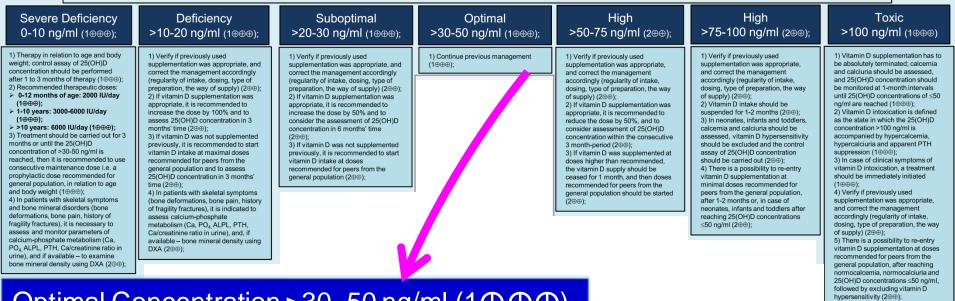
b. **1–10 years**: **3,000–6,000 IU/day** (1⊕⊕⊕);

c. **>10 years: 6,000 IU/day** (1⊕⊕⊕);

- Treatment of severe deficiency should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended to use consecutive maintenance dose, i.e., a prophylactic dose recommended for general population, in relation to age and body weight (1⊕⊕⊕);
- In patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO4, ALPL, PTH and Ca/creatinine ratio in urine), and if available to examine bone mineral density using DXA (2⊕⊕);

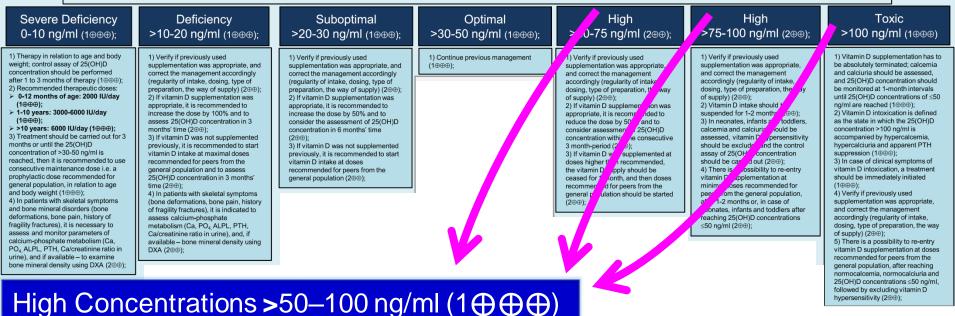
severe vitamin D deficiency can be treated with pharmacologic repletion initially (50,000 IU weekly for 3–12 weeks), followed by maintenance therapy (800 IU daily).

Severe Deficiency 0-10 ng/ml (1⊕⊕⊕);	Deficiency >10-20 ng/ml (1⊕⊕⊕);	Suboptimal >20-30 ng/ml (1⊕⊕⊕);	Optimal >30-50 ng/ml (1⊕⊕⊕);	High >50-75 ng/ml (2⊕⊕);	High >75-100 ng/ml (2⊕⊕);	Toxic >100 ng/ml (1⊕⊕⊕)
 Therapy in relation to age and body weight; control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); Recommended therapeutic doses: O-12 months of age: 2000 IU/day (1⊕⊕⊕); To gears: 3000-6000 IU/day (1⊕⊕⊕); To age and the arge of the arrive of t	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2@@); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time (2@@); If vitamin D was not supplemented previously, it is recommended to latart vitamin D intake at maximal <i>n</i> es recommended for peers fro. the general population and to usess 25(OH)D concentration in 3 months' time (2@@); In patients with ske pai symptoms (bone deformations, an the pain, history of fragility fracturese, is indicated to assess calcium-pri phate metabolism (Ca, I, 4, LPL, PTH, Ca/creatinine rati n urine), and, if available – bone ineral density using DXA (2@@) 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕⊕); If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the general population (2⊕⊕); 	1) Continue previous management (1⊕⊕⊕);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (2⊕⊕); If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started (2⊕⊕); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); Vitamin D intake should be suspended for 1-2 months (2⊕⊕); In neonates, infants and toddlers, calcomia and calciuria should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2⊕⊕); There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations <50 ng/ml (2⊕⊕); 	 Vitamin D supplementation has to be absolutely terminated; calcemia and calcuria should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of ≤50 ng/ml are reached (1⊕⊕⊕); Vitamin D intoxication is defined as the state in which the 25(OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕⊕⊕); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕⊕); Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕€); There is a possibility to re-entry vitamin D supplementation at doses recommended for peers from the general population, after reaching normocalcemia, normocalcuria and 25(OH)D concentrations ≤50 ng/ml,
						followed by excluding vitamin D

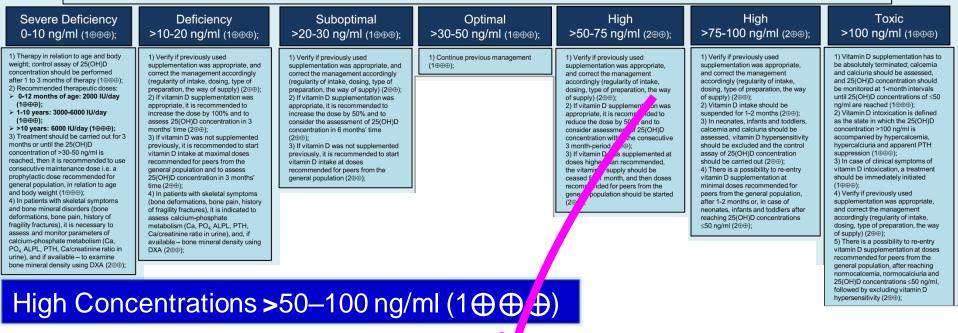

Deficiency >10–20 ng/ml $(1 \oplus \oplus \oplus)$

- 1. Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation and the way of supply) $(2 \oplus \oplus)$;
- 2. If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3-month time $(2 \oplus \oplus)$;
- 3. If vitamin D was not supplemented previously, it is recommended to start vitamin D intake **at maximal doses recommended for peers from the general population** and to assess 25(OH)D concentration in 3-month time (2⊕⊕);
- In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism [Ca, PO4, alkaline phos-phatase activity (ALPL), PTH, Ca/creatinine ratio in urine], and, if available—bone mineral density using dual-energy X-ray absorptiometry (DXA) (2⊕⊕);

Severe Deficiency 0-10 ng/ml (1⊕⊕⊕);	Deficiency >10-20 ng/ml (1⊕⊕⊕);	Suboptimal >20-30 ng/ml (1⊕⊕⊕);	Optimal >30-50 ng/ml (1⊕⊕⊕);	High >50-75 ng/ml (2⊕⊕);	High >75-100 ng/ml (2⊕⊕);	Toxic >100 ng/ml (1⊕⊕⊕)				
 Therapy in relation to age and body weight: control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); Recommended therapeutic doses: 0-12 months of age: 2000 IU/day (1⊕⊕⊕); 1-10 years: 3000-6000 IU/day (1⊕⊕⊕); 1-10 years: 6000 IU/day (1⊕⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended to use consecutive maintenance dose i.e. a prophylactic dose recommended for general population, in relation to age and body weight (1⊕⊕⊕); 1) n patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO, A.LPL, PTH, Ca/creatinine ratio in urine), and if available – to examine bone mineral disorts using DXA (2⊕⊕); 	1) Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) ($2\oplus \oplus$); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time ($2\oplus \oplus$); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time ($2\oplus \oplus$); 4) In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to astesses calcium-phosphate metabolism (Ca, PO ₄ ALPL, PTH, Ca/creatinie ratio in urine), and, if available – bone mineral density using DXA ($2\oplus \oplus$);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2009); If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2009); If vitamin D was not supplymented previously, it is recommend to start vitamin D intake at dose recommended for pervirom the general population B⊕); 	1) Continue previous management (1⊕⊕⊛);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (20⊕1); If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (29⊕1); If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started (2⊕⊕1); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2@⊕); Vitamin D intake should be suspended for 1-2 months (2@⊕); In neonates, infants and toddlers, calcemia and calcuna should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2@⊕); There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations <50 ng/ml (2⊕⊕); 	 Vitamin D supplementation has to be absolutely terminated; calcemia and calciuria should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of 550 ng/ml are reached (1⊕0⊕); Vitamin D intoxication is defined as the state in which the 25(OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕0⊕); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕⊕); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕0⊕); Yerviously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕0); There is a possibility to re-entry vitamin D supplementation at doses recommended for peers from the general population, after reaching normocalcemia, normocalciuria and 26(OH)D generation cfile acting 				
Suboptima										


1. Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation and the way of supply) $(2 \oplus \oplus)$;

- 2. If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6-month time $(2 \oplus \oplus)$;
- 3. If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at **doses recommended for peers from the general population** $(2 \oplus \oplus)$;



Optimal Concentration > 30-50 ng/ml ($1 \oplus \oplus \oplus$)

1. i. Continue previous management $(1 \oplus \oplus \oplus)$;

 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation and the way of supply) (2⊕⊕);

Concentrations >50–75 ng/ml (2⊕⊕)

If vitamin D supplementation was appropriate, it is recommended to **reduce the dose by 50%**, and to consider assessment of 25(OH)D concentration within the consecutive 3-month period $(2 \oplus \oplus)$;

If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started $(2 \oplus \oplus)$;

Severe Deficiency	Deficiency	Suboptimal	Optimal	High	High	Toxic
0-10 ng/ml (1⊕⊕⊕);	>10-20 ng/ml (1⊕⊕⊕);	>20-30 ng/ml (1⊕⊕⊕);	>30-50 ng/ml (1⊕⊕⊕);	>50-75 ng/ml (2⊕⊕);	>75-100 ng/ml (2⊕⊕);	>100 ng/ml (1⊕⊕⊕)
 Therapy in relation to age and body weight; control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); Recommended therapeutic doses: 0-12 months of age: 2000 IU/day (1⊕⊕⊕); 1-10 years: 3000-6000 IU/day (1⊕⊕⊕); > 10 years: 6000 IU/day (1⊕⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended to use consecutive maintenance dose i.e. a prophylactic dose recommended for general population, in relation to age and body weight (1⊕⊕⊕); 4) In patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO, ALPL, PTH, Ca/reatinine ratio in urine), and if available – to examine bone mineral density using DXA (2⊕⊕); 	1) Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) ($2 \oplus \oplus$); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time ($2 \oplus \oplus$); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time ($2 \oplus \oplus$); 4) In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism (Ca, PO ₄ , ALPL, PTH, Ca/creatinine ratio in urine), and, if available – bone mineral density using DXA ($2 \oplus \oplus$);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕9); 2) if vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕9); if vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the general population (2⊕9); 	1) Continue previous management (1⊕⊕⊕);	 Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2@⊕); If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (2@⊕); If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started (2⊕⊕); 	 Verify if previously used supplementation was appropriate, and correct the management accordingly (in µlarity of intake, dosing, type or reparation, the way of supply (24:); Vitamin D: take should be suspended to 1-2 months (28@b); In neone is, infants and toddlers, calcomia et i.calcuria should be assessed utamin D hypersensitivity should b uxcluded and the control assay of 5(OH)D concentration should b: carried out (2@b); The ris a possibility to re-entry vitaring a supplementation at mini tail doses recommended for plos from the general population, er 1-2 months or, in case of aconates, infants and toddlers after reaching 25(OH)D concentrations ≤50 ng/ml (2⊕⊕); 	 Vitamin D supplementation has to be absolutely terminated; calcemia and calcuira should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of ≤50 ng/ml are reached (1⊕⊕⊕); Vitamin D intoxication is defined as the state in which the 25(OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕⊕⊕); In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕⊕); Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕€); There is a possibility to re-entry vitamin D supplementation at doses recommended for peers from the general population, after reaching normocalcemia, normocalcuiria and 25(OH)D concentrations ≤50 nd/ml.

ollowed by excluding vitamin D

ersensitivity (2⊕⊕

High Concentrations >50–100 ng/ml $(1 \oplus \oplus \oplus)$

Concentrations >75–100 ng/ml ($2\oplus\oplus$)

- 1. Vitamin D intake should be suspended for 1–2 months $(2 \oplus \oplus)$;
- In neonates, infants and toddlers, calcemia and calciuria should be assessed, vitamin D hypersensitivity should be excluded and the control assay of 25(OH)D concentration should be carried out (2⊕⊕);
- There is a possibility to re-entry vitamin D supplementation at minimal doses recommended for peers from the general population, after 1–2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations ≤50 ng/ ml (2⊕⊕);

 1) Therapy in relation to age and body weight; control assay of 25(OHD) concentration has appropriate, and concentration has appropriate, its recommended to increase the dose by 100% and to assess 25(OHD) concentration in 3 months' time (280); 2) If vitamin D supplementation was appropriate, its recommended to increase the dose by 100% and to assess 25(OHD) concentration in 3 months' time (280); 3) If vatamin D was not supplemented to start with selectal symptoms to and to assess and monitor parameters of action history of againty interaked to start witamin D index and to assess and monitor parameters of action history of againty interaked to consider and the doses shift is recommended to start witamin D index and to assess and monitor parameters of action in short by assess and monitor parameters of action history of againty interaked to start witamin D index and to assess and monitor parameters of action in short by assess and monitor parameters of action in short by assess and monitor parameters of action in short by assess and monitor parameters of action with the comparation. The way of apply in the assess and monitor parameters of action with weight in the assess and monitor parameters of action with weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in the assess and monitor parameters of action weight in t	Severe Deficiency	Deficiency	Suboptimal	Optimal	High	High	Toxic
	0-10 ng/ml (1⊕⊕⊕);	>10-20 ng/ml (1⊕⊕⊕);	>20-30 ng/ml (1⊕⊕⊕);	>30-50 ng/ml (1⊕⊕⊕);	>50-75 ng/ml (2⊕⊕);	>75-100 ng/ml (2⊕⊕);	>100 ng/ml (1⊕⊕⊕)
bone mineral density using DXA (2®®); general population, after reaching normocalcemia, normocalculuria and 25(OHI)D experimentations 250 ng/ml.	 weight; control assay of 25(OH)D concentration should be performed after 1 to 3 months of therapy (1⊕⊕⊕); 2) Recommended therapeutic doses: 0-12 months of age: 2000 IU/day (1⊕⊕⊕); 1-10 years: 3000-6000 IU/day (1⊕⊕⊕); > 10 years: 6000 IU/day (1⊕⊕⊕); 3) Treatment should be carried out for 3 months or until the 25(OH)D concentration of >30-50 ng/ml is reached, then it is recommended for general population, in relation to age and body weight (1⊕⊕⊕); 4) In patients with skeletal symptoms and bone mineral disorders (bone deformations, bone pain, history of fragility fractures), it is necessary to assess and monitor parameters of calcium-phosphate metabolism (Ca, PO, ALPL, PTH, Cal/cratinine ratio in urine), and if available – to examine 	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕®); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 100% and to assess 25(OH)D concentration in 3 months' time (2⊕®); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at maximal doses recommended for peers from the general population and to assess 25(OH)D concentration in 3 months' time (2⊕€); 4) In patients with skeletal symptoms (bone deformations, bone pain, history of fragility fractures), it is indicated to assess calcium-phosphate metabolism (Ca, PO ₄ ALPL, PTH, Calcreatinine ratio in urine), and, if available – bone mineral density using	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (2⊕⊕); 2) If vitamin D supplementation was appropriate, it is recommended to increase the dose by 50% and to consider the assessment of 25(OH)D concentration in 6 months' time (2⊕⊕); 3) If vitamin D was not supplemented previously, it is recommended to start vitamin D intake at doses recommended for peers from the		supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply) (20⊕); 2) If vitamin D supplementation was appropriate, it is recommended to reduce the dose by 50%, and to consider assessment of 25(OH)D concentration within the consecutive 3 month-period (29⊕); 3) If vitamin D was supplemented at doses higher than recommended, the vitamin D supply should be ceased for 1 month, and then doses recommended for peers from the general population should be started	supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2@⊕); 2) Vitamin D intake should be suspended for 1-2 months (2⊕⊕); 3) In neonates, infants and toddlers, calcemia and calciuria should be assessed, vitamin D hypersensitivity should be cardiaded and the control assay of 25(OH)D concentration should be cardiaded and the control assay of 25(OH)D concentration should be cardiaded and the control assay of 25(OH)D concentration after 1-2 months or, in case of neonates, infants and toddlers after reaching 25(OH)D concentrations	be absolutely terminated; calcemia and calciuria should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of s50 ng/ml are reached (1⊕0⊕1; 2) Vitamin D intoxication is defined as the state in which the 25(OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression (1⊕0⊕1; 3) In case of clinical symptoms of vitamin D intoxication, a treatment should be immediately initiated (1⊕⊕⊕); 4) Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation, the way of supply (2⊕0⊕); 5) There is a possibility to re-entry when in D supplementation at doses accommended for peers from the general population, after reaching normocalcemia, normocalciuria and

Toxic Concentration >100 ng/ml $(1 \oplus \oplus \oplus)$

 Vitamin D supplementation has to be stopped forthwith; calcemia and calciuria should be assessed, and 25(OH)D concentration should be monitored at 1-month intervals until 25(OH)D concentrations of ≤50 ng/ml are reached (1⊕⊕⊕);

hypersensitivity (2⊕⊕);

- 2. Vitamin D intoxication is defined as the state in which the 25 (OH)D concentration >100 ng/ml is accompanied by hypercalcemia, hypercalciuria and apparent PTH suppression $(1 \oplus \oplus \oplus)$;
- 3. In case of clinical symptoms of vitamin D intoxication, treatment should be immediately initiated $(1 \oplus \oplus)$;
- 4. Verify if previously used supplementation was appropriate, and correct the management accordingly (regularity of intake, dosing, type of preparation and the way of supply) $(2 \oplus \oplus)$;
- There is a possibility to re-entry vitamin D supplementation at doses recommended for peers from the general population, after reaching normocalcemia, normocalciuria and 25(OH)D concentrations ≤50 ng/ml, followed by excluding vitamin D hypersensitivity (2⊕⊕);

THE LANCET Diabetes & Endocrinology

COMMENT | VOLUME 8, ISSUE 9, P735-736, SEPTEMBER 01, 2020

Vitamin D for COVID-19: a case to answer?

Adrian R Martineau 🖾 🛛 Nita G Forouhi

Published: August 03, 2020 • DOI: https://doi.org/10.1016/S2213-8587(20)30268-0 •

Pending results of such trials, it would seem uncontroversial to enthusiastically promote efforts to achieve reference nutrient intakes of vitamin D, which range from 400 IU/day in the UK to 600–800 IU/day in the USA. These are predicated on benefits of vitamin D for bone and muscle health, but there is a chance that their implementation might also reduce the impact of COVID-19 in populations where vitamin D deficiency is prevalent; there is nothing to lose from their implementation, and potentially much to gain.

